## Annex 61 – Technology Day and Experts Workshop



### **Energy Efficient Building Envelopes Deep Energy Renovation Policy**

Marc LaFrance
International Energy Agency

21 September 2014 Tallinn, Estonia





#### Overview

- Introduction Transition to Sustainable Technology: Opportunities and Strategy to 2050
- Energy Efficient Building Envelope Technology Roadmap
- Deep Energy Renovation Strategy and Approach Integration with Systems
- Data Needs to Drive Policy Participation with IEA Activities

#### **Importance of Buildings Sector**



■ Coal

■ Oil

22%

28%

- Largest end-use sector
- 1/3 carbon emissions
- 50% of electricity
- Major portion of GDP
- Stock opportunities:
  - 75% 90% of OECD building stock still in service by 2050
  - Large population growth in developing world will drive new floor area that needs to be efficient (2.5 billion more by 2050)

Other sectors

3 © OECD/IEA 2014

### **Transition to Sustainable Buildings: Strategies and Opportunities to 2050**



- The overall ETP strategy for buildings
- Global and regional analysis, energy savings and emissions reduction forecasts
- Technical opportunities and recommendations: envelope; heating and cooling; appliances, lighting and cooking
- Policies to transform buildings









### **Technology Roadmap Energy Efficient Building Envelopes**



- Construction transformation strategy
- Provides technical, economic and strategic framework
- Assessment of high priority areas for 12 regions of the world
- Policy criteria and evaluation



Technology Roadmap Energy efficient building envelopes





# **Transformation to Low-Energy Buildings**



Inefficient – still common and old stock

Single pane windows.
No insulation.
High air leakage.

Typical building code in advanced regions

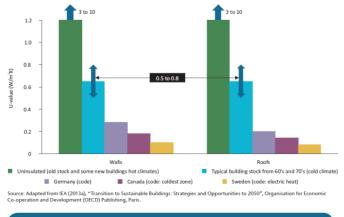
Low-e double glaze windows.
High levels of insulation.
Low air leakage.

Typical building code in advanced regions

Low-e double glaze windows.
Dypical building code in advanced regions

Highly insulated windows and dynamic solar control.
Optimised designs and orientations.
Daylighting.

KEY POINT: the world needs to shift from very old buildings to modern buildings, and then to low-energy or zero-energy buildings.


## First Step – reduce the need for heating and cooling!!

© OECD/IEA 2014

#### **Insulation Opportunity**



- Very stringent U-values for electric resistance heaters in Sweden, and Canada's coldest climate zone
- IEA recommending goal for average wall and roof U-values ≤ 0.15 W/m2K cold climate, ≤ 0.35 W/m²K hot climate based on LCC



KEY POINT: levels of insulation vary widely for the existing stock of buildings, as well as for new construction.

#### Validated Air Sealing



- Validated air sealing is a critical measure for building codes and renovation
- Majority of energy performance certificates do not require validation
- More research needed to offer more affordable testing and solutions (mostly for developing markets)



Source: Oak Ridge National Laboratory

© OECD/IEA 2014

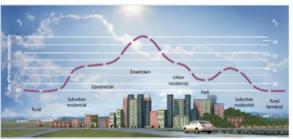
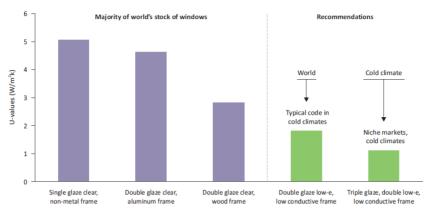

#### **Reflective Roof Opportunity**



Table 3: Performance characteristics and energy-savings potential for reflective roofs

|                                  | SR of a<br>dark roof            | SR of a<br>white roof              | SR of a cool-<br>coloured roof                        | Roof energy-<br>savings potential<br>(with high level<br>of insulation) | (with low level of |
|----------------------------------|---------------------------------|------------------------------------|-------------------------------------------------------|-------------------------------------------------------------------------|--------------------|
| Roof performance characteristics | SR 5 (black)<br>to SR 20 (grey) | SR 60 (soiled)<br>to SR 80 (clean) | SR 25 (darker<br>colour) to SR 50<br>(lighter colour) | 13%                                                                     | 25%                |

Note: High insulation refers to a U value of 0.29 W/m²K, and low level of insulation has a U value of 0.51 W/m²K or higher.



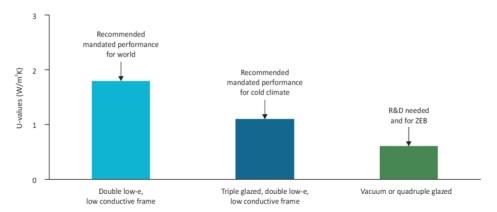

Source: LBNL, Heat Island Group

#### **Windows Market/Opportunity**



Figure 3: Most common types of windows in service and being sold today




Note: U-values presented in this roadmap represent whole-window performance unless noted in accordance with ISO 15099, thus an ISO 10077 standard of  $1.0 \text{ W/m}^2\text{K}$  is roughly equal to  $1.1 \text{ W/m}^2\text{K}$  per ISO 15099.

KEY POINT: the majority of the world's installed windows can be significantly improved and more work is needed to ensure that new sales meet more stringent performance criteria.

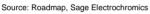
OECD/IEA 2014

### Window Requirements/ R&D





#### High or low solar heat gain based on climate!


U-value in accordance with ISO 15099, most advanced EU windows are rated 10% to 15% more favourably than they should be.

# Dynamic solar control – more R&D needed

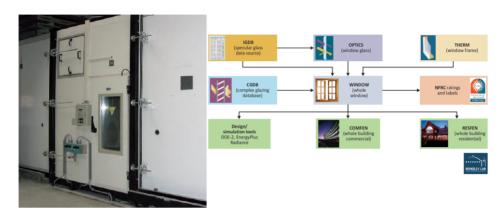


- Lower cost, more economic viable dynamic exterior shading for global markets (lower energy prices)
- Dynamic glazings large investment recently, on cusp of market viability for non-niche applications








13 © OECD/IEA 2014

# **Assessment of Advanced Envelope Components**



| Market<br>maturity/<br>saturation                                   | ASEAN    | Brazil   | China    | Euro pean<br>Union | ındia    | Japan/<br>Korea | Mexico   | Middle<br>East | Australia/<br>New<br>Zealand | Russia   | South<br>Africa | United<br>States/<br>Canada |
|---------------------------------------------------------------------|----------|----------|----------|--------------------|----------|-----------------|----------|----------------|------------------------------|----------|-----------------|-----------------------------|
| Double-glazed<br>low-e glass                                        | •        | <b>A</b> | <b>A</b> | *                  | <b>A</b> | •               | •        | <b>A</b>       | •                            | •        | •               | *                           |
| Window films                                                        | •        | <b>A</b> | •        | •                  | •        | •               | <b>A</b> | •              | •                            |          | <b>A</b>        | •                           |
| Window<br>attachments<br>(e.g. shutters,<br>shades, storm<br>panel) | •        | •        | •        | *                  | •        | •               | <b>A</b> | •              | •                            | •        | •               | •                           |
| Highly insulating<br>windows (e.g.<br>triple-glazed)                |          | •        | •        | •                  |          | •               |          | •              | •                            | <b>A</b> | •               | •                           |
| Typical insulation                                                  | *        | •        | *        | *                  | •        | *               | •        | *              | *                            | *        | •               | *                           |
| Exterior insulation                                                 | •        | •        | •        |                    | •        | •               | •        | •              |                              | •        | <b>A</b>        |                             |
| Advanced<br>insulation (e.g.<br>aerogel, VIPs)                      |          |          |          | •                  |          | •               |          |                |                              | •        | •               | •                           |
| Air sealing                                                         | •        | <b>A</b> | •        |                    | •        | •               |          | •              | <b>A</b>                     | <b>A</b> |                 | •                           |
| Cool roofs                                                          | <b>A</b> | <b>A</b> | •        | •                  | <b>A</b> | <b>A</b>        | <b>A</b> | •              | •                            |          |                 | *                           |
| BIPV/<br>advanced roofs                                             | <b>A</b> | <b>A</b> |          | •                  | <b>A</b> | •               |          |                | <b>A</b>                     | <b>A</b> | <b>A</b>        | •                           |

# Performance Research: Essential in Developing Economies – Global Priority



Thermal Chamber, Source: Fraunhofer, IBP

Window Simulation Tools, Source: LBNL

15 © OECD/IEA 2014

# **Performance** research assessment



Table 8: Building envelope material test, rating and labelling assessment

| Level of test<br>and labelling<br>infrastructure | ASEAN    | Brazil   | China    | European<br>Union | India    | Japan/<br>Korea | Mexico   | Middle   | Australia/<br>New<br>Zealand | Russia   | South | United<br>States/<br>Canada |
|--------------------------------------------------|----------|----------|----------|-------------------|----------|-----------------|----------|----------|------------------------------|----------|-------|-----------------------------|
| Window test<br>protocols                         | •        | <b>A</b> | 0        | *                 | <b>A</b> | •               | •        | <b>A</b> | •                            | *        | •     | *                           |
| Window labels                                    |          | _        | _        | _                 | _        | •               |          | _        |                              | •        |       |                             |
| Window<br>attachment test<br>protocols           | •        |          |          | *                 |          | •               |          | •        | •                            | <b>A</b> | •     | •                           |
| Window<br>attachment<br>labels                   | <b>A</b> |          |          | •                 |          | •               |          | •        |                              | <b>A</b> |       | •                           |
| Insulation test<br>protocols and<br>certificates | •        | •        | •        | *                 | •        | •               | •        | •        | *                            | *        | •     | *                           |
| Air sealing validation testing                   | •        |          |          | *                 | <b>A</b> | •               |          | •        | •                            | <b>A</b> |       | •                           |
| Cool roofs aged ratings and certificates         | <b>A</b> | •        | •        | •                 | •        | •               | <b>A</b> |          |                              |          | •     | *                           |
| Moisture<br>evaluation of<br>envelopes           |          |          | <b>A</b> | *                 | <b>A</b> | •               |          | <b>A</b> | •                            |          |       | *                           |

★ Mature Sestablished 🛕 Initiating

# **Criteria for Policy Assessments, IEA Perspective**



| Policies                          | ASEAN | Brazil | China | European<br>Union | India | Japan/<br>Korea | Mexico | Middle<br>East | Australia/<br>New<br>Zealand | Russia | South<br>Africa | United<br>States/<br>Canada |
|-----------------------------------|-------|--------|-------|-------------------|-------|-----------------|--------|----------------|------------------------------|--------|-----------------|-----------------------------|
| Governance                        | L     | M      | Н     | Н                 | M     | M               | М      | L              | M                            | L      | M               | M                           |
| Energy prices                     | L     | M      | М     | H                 | М     | H               | L      | L              | M                            | L      | М               | M                           |
| Infrastructure and human capacity | М     | L      | М     | Н                 | М     | Н               | М      | L              | М                            | М      | М               | Н                           |
| Commodity of efficient materials  | L     | М      | Н     | Н                 | М     | Н               | М      | L              | М                            | М      | L               | Н                           |
| Voluntary programmes              | L     | L      | L     | М                 | L     | L               | L      | L              | L                            | L      | L               | L                           |
| Mandatory<br>building codes       | L     | L      | М     | Н                 | L     | М               | М      | L              | М                            | М      | М               | Н                           |

Note: H: high, M: medium, L: low

17 © OECD/IEA 2014

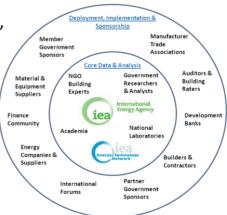
## **Deep Energy Renovation Approach and Strategy**



- Require stringent component specifications during replacement (much more often than systems level approach)
- Develop system level criteria (e.g. >50% savings or not more than 60 kwh/m2/yr (GBPN definition))
- Only provide financial incentives (whole building and/or components) for very high performance
- Move market to adopt deep energy renovation as part of normal renovation (currently ~1% per year in EU but level may be higher if buildings are refurbished every 30 to 40 years)

# Major Paradigm Shift Required to Upgrade Building Stock by 2050

- 1) Document and replicate cost effective deep energy renovation as part of normal business activity (current renovation) Should be highest priority within OECD and we have a lot of work to do!!!
- 2) Establish business case for buildings not currently planned for renovation – challenging goal and potentially not life-cycle-cost neutral (establishing real value for nonenergy benefits may be essential)
- 3) Establish mitigation cost for early renovation would likely require carbon trading and be a lower cost option compared to other solutions such as carbon capture and storage


19 © OECD/IEA 201

#### Working with the IEA



- Collaboration on country, regional and global modelling, and data sets
- Participation in specific projects (e.g. extensive data and metrics to drive policy, transforming construction implementation plan)
- Attending and active participation at workshops (Nov 12<sup>th</sup>/13<sup>th</sup> in Paris)

#### Framework for Partnership



# **Tracking Progress – Data to Drive Policy**



- Much more data is needed
  - (e.g. new technology adoption rates, market share of zero-energy buildings, energy intensity of stock and most advanced buildings by end-use/building type, district heating and CHP, etc)
- More specific performance criteria needed even for most advanced regions
  - (e.g. EU specifications for renovation in public buildings, definition of near zero energy buildings by type and climate, etc)
- IEA initiating improved collaborations

21 © OECD/IEA 2014

# **Deep Energy Renovation Data Requirements**



- Capitol cost/performance curves for specific building types in regional markets
  - System level packages including technology components, installed cost, and savings potential indexed to climate
  - Component replacements, price premiums and savings potential indexed to climate
- Work with investment community to help derive required metrics for action and project approval
- Derive typical energy saving benefits, but also multiple benefits beyond efficiency (new IEA report released, 9 Sept 2014)

#### **Recent IEA Outreach**



- May/June 2014 Webinar Series
  - Webinar 1 Building's Programmatic Priorities and ETP 2014 (Building Related Results)
  - Webinar 2 Capacity Building and Construction Transformation in Emerging Economies
  - Webinar 3 IEA's Building Activities/Partnership Project Plans for Discussion
  - Webinar 4 IEA Building Modelling and Data Review
  - http://www.iea.org/topics/energyefficiency/subtopics/sustainablebuildings/
- Sustainable Buildings Workshop, IEA, Paris
  - November 12<sup>th</sup> and 13<sup>th</sup>
  - http://www.iea.org/workshop/iea-sustainable-buildingsworkshop12-13-nov.html
  - Registration <a href="https://fr.surveymonkey.com/s/6NV27NS">https://fr.surveymonkey.com/s/6NV27NS</a>

23 © OECD/IEA 2014

#### **Contact Data**



#### **International Energy Agency**

9, rue de la Federation757 Paris Cedex 15, France

#### **Marc LaFrance**

Energy Analyst Buildings Sector, Sustainable Energy Policy and Technology Directorate

marc.lafrance@iea.org, +33 (0)1 40 57 67 38

#### Download Envelope Roadmap - free

http://www.iea.org/publications/freepublications/publication/name,45205,en.html

#### Download Building Code Policy Pathway - free

http://www.iea.org/publications/freepublications/publication/PP7\_Building\_Codes\_2013\_WEB.pdf

IEA Bookstore – Buildings Book – discounts to non-profits, partners, and bulk orders

http://www.iea.org/W/bookshop/add.aspx?id=457