Approaches to Deep Energy Retrofits in the US Federal Government

GSA's National Deep Energy Retrofit

Annex 61 Technical Day September 22, 2014

John Shonder Oak Ridge National Laboratory

Government

Why deep retrofits are important to US

- Legislation requires a 30% reduction in energy use federal buildings by 2015 relative to the 2003 base
- Energy performance contracts the main vehicle to comprehensive energy retrofits in the US federal government - are able to achieve 20% reductions energy use, on average
- Meeting the 30% goal will require the government to go beyond the typical retrofit projects that have been implemented so far

Two main models have emerged

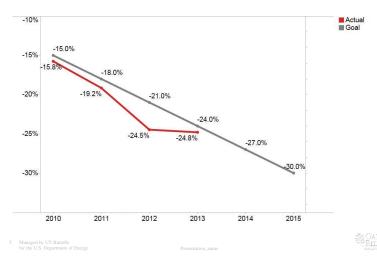
US Army

- Combine energy project with building renovation
- Use two contractors: one for energy measures (under an ESPC contract) and one for renovation tasks
- Several challenges to marrying these two contracts

GSA Approach

- Use ESPC to implement comprehensive energy projects
- Encourage ESCOs to dig deeper, using design charettes and centralized tech/contracting assistance

US General Services Administration (GSA)


- "The government's landlord"
 - 9,100 separate assets
 - 376 million square feet of space
- Energy use represents 3.7% of federal government (9.3% of civilian agencies)
- Average age of buildings is 48 years

4 Managed by UT-Battelle for the U.S. Department of Energy

GSA Energy Intensity % reduction from 2003

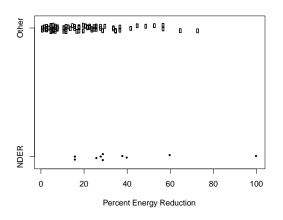
Goals of GSA's National Deep Energy Retrofit (NDER) project

- Retrofit plans that move a building towards net zero energy consumption
- Use of innovative technologies
- Use of renewable energy technologies
- Unstated objective: achieve deep(er) energy savings than in past projects

6 Managed by UT-Battelle

NDER Results

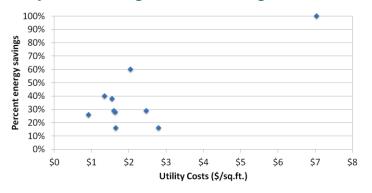
- 10 Task Orders (projects) awarded
- Total implementation price of \$172 million
- 14.7 million square feet of floorspace
- Reduces GSA's energy use by 365 billion Btu per year


GSA did achieve deeper energy savings

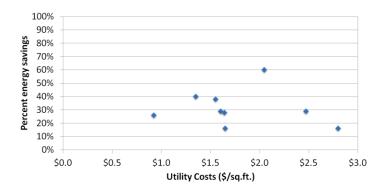
- A sample of 70 non-NDER federal ESPC projects achieved an average of 18.5% savings
- Average savings of 10 NDER was 38%, more than twice the other projects
- Wilcoxon rank sum test shows the difference in means is statistically significant at the p=0.003 level

Percent energy reduction of NDER projects compared with other PPCC projects

What are some potential drivers for deeper energy savings?

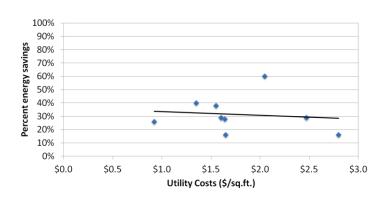

- Energy prices
- Baseline energy use index (EUI)
- Amount of "one-time savings"
- Is there some way to select buildings that present opportunities for deep savings?

CAK RIDGE Parked Salesses

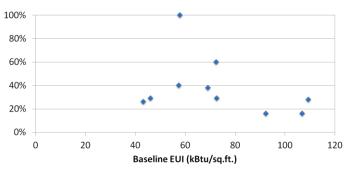

E 10 Managed by UT-Battelle for the U.S. Department of F

Percent savings appears related to baseline utility costs, but figure is misleading

With high-leverage point removed, percent savings appears unrelated to baseline utility costs



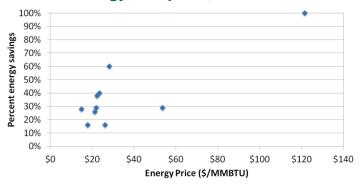
12 Managed by UT-Battelle



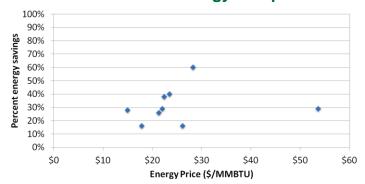
for the U.S. Department of Energy

The relation is opposite to what we expect (though effect is not statistically significant)

Percent savings appears unrelated to EUI as well

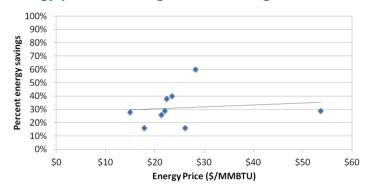


OAK RIDGE

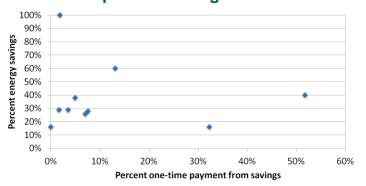

14 Managed by UT-Battelle for the U.S. Department of Ener

Percent savings appears related to baseline energy unit price, with outlier

With outlier removed savings appears unrelated to baseline energy unit price



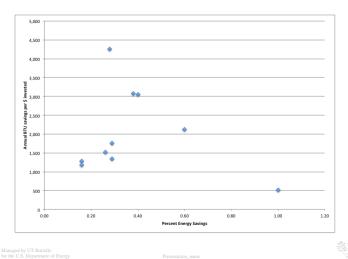
16 Managed by UT-Battelle for the U.S. Department of Energy

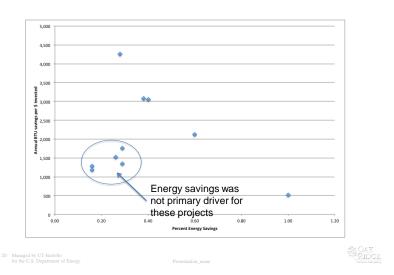


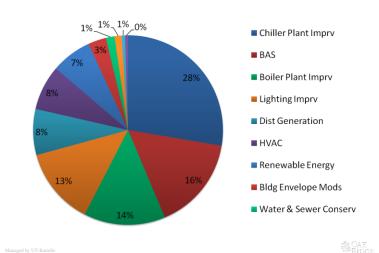
11 — Kelley, page 8

Percent savings increases with increasing energy prices, but regression not significant

Amount of one-time payment also unrelated to percent savings achieved


ged by UT-Battelle e U.S. Department of Energy


18 Managed by UT-Battelle


BTU/\$ invested vs. percent Savings

Different classes of projects

Distribution of ECM Investment

ECMs – FEMP History vs. GSA NDER

FEMP ESPC Database	GSA NDER
HVAC (20%)	Chiller Plant Improvements (28%)
Lighting Improvements (16%)	BAS (16%)
BAS (15%)	Boiler Plant Improvements (14%)
Chiller Plant Improvements (11%)	Lighting Improvements (13%)
Renewable Energy (11%)	Dist Generation (8%)
Energy/Utility Distribution (8%)	HVAC (8%)
Distributed Generation (5%)	Renewable Energy (7%)
Boiler Plant Improvement (5%)	Bldg Envelope Mods (3%)
Water & Sewer Conservation (3%)	Water & Sewer Conservation (1%)
Electric Motors and Drives (2%)	Commissioning (1%)
Bldg Envelope Mods (1%)	Energy/Utility Distribution (1%)
Other (3%)	Electric Motors and Drives (1%)

22 Managed by UT-Battelle for the U.S. Department of Ener

Deep retrofits can be implemented across a wide spectrum of buildings/conditions

- What is not (necessarily) required to achieve deeper energy savings in ESPC
 - High energy prices
 - High energy consumption
 - Advanced ECMs
 - Large payments from savings in implementation period
 - O&M savings

What is required

- Buildings that have not undergone recent energy retrofit projects
- Emphasis from agency
- Thorough audit process to identify ECMs
- Integrated design approach
- Realization that deep retrofits cost more (in terms of energy savings per dollar invested)

ORNL's Support to FEMP's Utility Program and Green Procurement/Other Subcontracts

Questions

John Shonder
Oak Ridge National Laboratory
shonderja@ornl.gov
865-574-2015

SOAK RIDGI Patoni labora

Managed by UT-Battelle for the U.S. Department of Energy