Business and Technical Concepts of Deep Energy Retrofit of Public Buildings - IEA EBC Annex 61

Optimization of Bundles of Core Energy Conservation Technologies for Deep Energy Retrofit

Subtask A

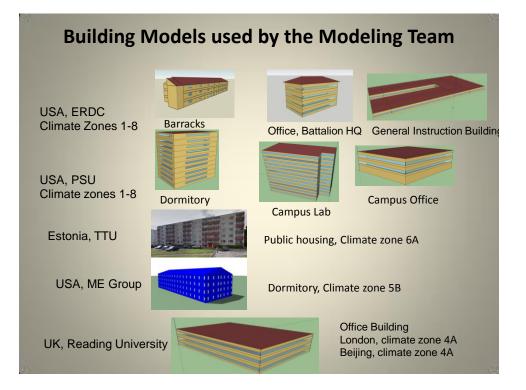
Objectives

- Analyze and optimize characteristics of limited bundles of ECM to be used in Deep Energy Retrofit Projects (providing 50-60% site energy use reduction compared to the baseline)
- Three categories of Buildings:
 - Barracks/dormitories/subsidized public housing
 - Offices
 - Educational buildings (schools, training facilities, etc)
- 16 climate zones covering all climate conditions in Europe and North America
- Energy prices: Gas 2.7c/kWh 9.7c/kWh; Electricity: 8c/kWh - 35c/kWh

Modeling team

_			Building	type	
Country	Organization	Name	B/D/H	Of	Ed/Tr
Austria	AEE	Heimo Staller	Y		
Canada	McMaster University	Samir Chidiac		Y	
Denmark	Danish Building Research Institute, SBi	Kirsten Engelund Thomsen			Ŷ
Estonia	Tallinn University of Technology	Targo Kalamees, Kalle Kuusk, Simon Ilomets, Üllar Alev, Endrik Arumägi	Y		
	University of Tartu	Tonu Mauring			
Germany	KEA	Martina Riel		Y	
	Passive House Institute	Berthold Kaufmann		Ī	
UK	University of Reading	Runming Yao		(UK/China)	
USA	USACE ERDC	Alexander Zhivov	Y	Y	
	NREL	Michael Deru			Y
	USACE ERDC	Richard Liesen	Y	Y	?
	USACE ERDC	Michael Case	Y	Y	?
	Ebert and Baumann Cons. Engrs.	Annie Marston			
	M.E. GROUP, INC	Ravi Maniktala, Miles Dake		Y	
	Pennsylvania State University	Mohammad Heidernejad	Y	Y	Y

Approach


- Each building modeler will use building models they have proposed for the study and conduct the study using climate zone (s) of their country (using representative cities as minimum and for all 15 climates zones if they chose to;
- Conduct modeling for the following scenarios and calculate site and source energy use:
 - <u>Scenario 1</u> Baseline: pre-1980 standard to describe the building envelope and systems. Think about building use and systems operation schedules as well as appliances and their use in W/m2, which I suggest to keep the same for all scenarios, though they will be improved/reduced over time;
 - <u>Scenario 2</u> Business as usual (the base case) building improvement to meet minimum current standards (usually related to energy efficiency of fans, motors, chillers, furnaces, lighting fixtures, etc). E.g., for the USA this will be the ASHRAE Standard 90.1 2010, which is referred to in the recent 10 CFR-433. Typical energy use reduction using such approach does not exceed 10-15% from the baseline. For Germany this will be EnEV 2014 with a typical energy use reduction of 30- 40% at a level which is allowed for +30% compared to the requirements for a new building.
 - <u>Scenario 3</u> Investigate what it will take (optimize parameters of the core technology bundles listed in Appendix 2, including listed in the Table below), to achieve 50% energy user reduction against the baseline or select the minimum current requirement (whatever is more stringent)
 - <u>Scenario 4</u> Investigate characteristics / parameters of the core technology bundles listed in attachment 2) to achieve the current national dream energy use intensity levels in the renovated building (e.g., passive house requirement). The site and source energy to be achieved here shall be presented in kWh/m² (total for heating, cooling and electricity);
- Calculate annual energy cost for all scenarios using different levels of energy cost
- Calculate the budget increase limit against the base case for scenarios 3 and 4, which can be used for energy enhancements using SCALAR RATIOS developed by the ASHRAE

	Country	Climate zone(s)	Representative City
US DOE Climate Zones	Austria	4a and 5a	Braganza, Innsbruck, Klagenfurt, L Wien, Eisenstaedt, Graz
c, Dry (8)	Canada	5c, 6a, 7, 8	Edmonton, Ottawa, Vancouver
	Denmark	5a	Copenhagen
	Estonia	6a	Tartu
	Finland	6a and 7	Vantaa, Jyväskylä, Sodankylä
The company of	Germany	5a	Wurzburg
	UK	4a	London
	UK/China	4a	Beijing
1a-7a – humid 2b-8b – dry 3c, 5c - marine	USA	1a-8b	Miami, Houston, Phoenix, Memph El Paso, San Francisco, Baltimore, Albuquerque, Seattle, Chicago, Colorado Springs, Burlington, Hele Duluth, Fairbanks

Category	Name	Specification
Building	Roof insulation	Level to be defined through modeling
U	Wall insulation	Level to be defined through modeling
Envelope	Slab Insulation	Level to be defined through modeling
	Windows	Parameters to be defined through modeling
	Doors	Parameters to be defined through modeling
	Thermal bridges remediation	See the BE Guide
	Air tightness	0.15 cfm/ft2 (for USA)
	Vapor Barrier	See the BE Guide
	BE QA	See the BE Guide
Lighting and Electrical	Lighting design , technologies and controls	See the USACE Lighting Guide
	Advanced plug loads, smart power	TopTen (Europe, USA), Top Tier
Systems	strips and process equipment	EnergyStar, FEMP Designated, etc
HVAC	High performance motors, fans,	ASHRAE Std 90.1 2013 and EPBD
	furnaces, chillers, boilers, etc	(Table will be provided in the Guide)
	DOAS	See the Guide
	HR (dry and wet)	>80% efficient, see the Guide
	Duct insulation	Based on EPBD requirements
	Duct airtightness	Based on EPBD requirements
	Pipe insulation 6	Based on EPBD requirements

Baseline and Current Minimum Energy Standards for Building Renovation

Country	Baseline	Current Minimum Requirement
Austria		
Canada		
Denmark		
Estonia		
Finland		
Germany	Before WSVO 1977	for refurbishment: EnEV 2014 +40%: refurbishments are allowed for 40% higher level than new building.
υκ		
USA	ASHRAE Std 90.1 1980	ASHRAE Std 90.1 2010

Building Mo	dels use	d by the	Modelin	g Team					
Germany, KEA Germany, PHI		S	chool Building,	Climate Zone 5A					
Austria, AEE		Publi	c housing, Clim	ate Zones 4A an	d 5A				
Denmark, Danish Buildin Research Institute, SBi	Denmark, Danish Building Research Institute, SBi School Building, Climate zone 5A								
Canada, McMaster	Building Type	Number of storey's	Building area, m ²	Climates zones					
University	Low rise office	2	9,000	5A ,5C, 6A, 7, 8					
	Medium rise office	10	45,000	5A, 5C, 6A, 7, 8					
	High rise office	18	81,000	5A, 5C, 6A, 7, 8					
USA, NREL		Ed	ucational Buildir	ng Complex, Zon	e 3C				

Army Bar	racks Building	32
٥ ٩ ٩ ٩	Climate Zone	City
	1A	Miami, FL
	2A	Houston, TX
	2B	Phoenix, AZ
	3A	Memphis, TN
	3B	El Paso, TX
	3C	San Francisco, CA
	4A	Baltimore, MD
	4B	Albuquerque, NM
	4C	Seattle, WA
	5A	Chicago, IL
Model Building contains 56 double occupancy units. Each apartment unit has two bedrooms with a storage	je 5B	Colorado Springs, CO
area, one shared bathroom, a kitchen, a mechanical and a storage area.	6A	Burlington, VT
The first floor has 18 units, a laundry room, a comm a mechanical room, and a storage area. The second and third floors have 19 units. Each flo	6B	Helena, MT

1			
Building Component	Baseline Building Model	Base Case Building Model	Efficient Building Model
Area	54,771 sq ft (5088.4 m ²)	Same as baseline	Same as baseline
Floors	3	Same as baseline	Same as baseline
Orientation	Long axis running east and west	Same as baseline	Same as baseline
Window to wall ratio	15% on north and south facades	Same as baseline	Same as baseline
Window type	Standard 90.1-1980	Standard 90.1 2010	See Table 4
Wall construction	Steel frame	Same as baseline	Same as baseline
Wall insulation	Standard 90.1-1980	Standard 90.1 2010	See Table 3
Roof construction	Sloped roof and attic with insulation at the roof level	Sloped metal roof and attic with insulation at the ceiling level	Sloped metal roof and attic with insulation at the ceiling level
Roof insulation	Standard 90.1-1980 equal to the "insulation entirely above deck"	Standard 90.1-2010 equal to the "insulation entirely above deck"	See Table 3
Infiltration	1.2 cfm/sq ft @ 0.3 inch w.c.	0.4 cfm/sq ft @ 0.3 inch w.c.	0.15 cfm/sq ft @ 0.3 inch w.c.
Lighting	Rooms - 1.1 W/sq ft (11.8 W/m ²) Corridors: 1.1 W/sq ft (11.8 W/m ²) See Table 6	Rooms – 1.0 W/sq ft (10.8 W/m²) Corridors: 0.5 W/sq ft (5.4 W/m²) See Table 6	Rooms – 0.6 W/sq ft (6.5 W/m²) Corridors: 0.35 W/sq ft (3.8 W/m²) See Table 6
Plug loads	1.7 W/sq ft (18.3 W/m ²) plus refrigerator and range	1.7 W/sq ft (18.3 W/m ²) plus refrigerator and range	0.835 W/sq ft (W/m ²) plus refrigerator and range
Temp set points	70°F (21.1C) heating; 75°F (23.9 C) cooling, no set back	Same as baseline	Same as baseline
HVAC	DOAS (2.1 COP), central natural gas boiler hot water system (0.80 Ei), 4-pipe Fan Coil Units (FCU's) for zone temperature control.	DOAS (2.87 COP), central natural gas boiler hot water system (0.80 E _i), 4-pipe Fan Coil Units (FCU's) for zone temperature control.	DOAS (4.4 COP), central natural gas boiler hot water system (0.80 E,), 4-pipe Fan Coil Units (FCU's) for zone temperature control.
DHW	Standard natural gas boiler (0.8 E _t)	Standard natural gas boiler (0.8 Et)	Condensing natural gas boiler (0.95 E ₁)

Table 3. Wall and Roof Insulation Values

Climate Zone	1A	2A	2B	3A	3B	3C	4A	4B	4C	5A	5B	6A	6B	7A	8A
Walls (in order from most to least stringent)															
Wall Insulation Passive House R-Value	R-19+ R7.5ci	R-19+ R15ci	R-19+ R15ci	R-19+ R20ci	R-19+ R20ci	R-19+ R10ci	R-19+ R25ci	R-19+ R25ci	R-19+ R20ci	R-19+ R30ci	R-19+ R30ci	R-19+ R40ci	R-19+ R40ci	R-19+ R50ci	R-19 R50c
WBDG, Army specs— Steel-Framed Walls	R-13+ R7.5ci	R-13+ R12.5ci	R-13+ R12.5ci	R-13+ R12.5ci	R-13+ R12.5ci	R-13+ R18.8ci	R-13+ R18.8ci	R-13+ R18.8ci	R-13 R18.8						
90.1-2010 addenda bb— Steel-Framed Walls	R-13+ R7.5ci	R-13+ R7.5ci	R-13+ R7.5ci	R-13+ R7.5ci	R-13+ R7.5ci	R-13+ R7.5ci	R-13+ R10.0ci	R-13 R10.0							
189.1–2009– Steel-Framed Walls	R-13+ R5.0ci	R-13+ R5.0ci	R-13+ R5.0ci	R-13+ R5.0ci	R-13+ R5.0ci	R-13+ R5.0ci	R-13+ R10.0ci	R-13 R10.0							
ASHRAE AEDG— Steel-Framed Walls	R-13.0	R-13.0	R-13.0	R-13+ R3.8ci	R-13+ R3.8ci	R-13+ R3.8ci	R-13+ R7.5ci	R-13- R21.6							
90.1–2007— Steel-Framed Walls	R-13.0	R-13.0	R-13.0	R-13+ R3.8ci	R-13+ R3.8ci	R-13+ R3.8ci	R-13+ R7.5ci	R-13- R7.5c							
Roofs (in order from most to least stringent)															
Roof Insulation Passive House R-Value	R-25	R-30	R-30	R-35	R-35	R-25	R-45	R-45	R-35	R-55	R-55	R-70	R-70	R-80	R-90
WBDG, Army specs— Roofs insulation above deck	R-25	R-25	R-25	R-25	R-25	R-25	R-30	R-30	R-30	R-30	R-30	R-40	R-40	R-40	R-40
90.1-2010 addenda bb— Roofs insulation above deck	R-20	R-25	R-25	R-25	R-25	R-25	R-30	R-35	R-35						
189.1–2009— Roofs insulation above deck	R-20	R-25	R-25	R-25	R-25	R-25	R-25	R-25	R-25	R-25	R-25	R-30	R-30	R-35	R-35
ASHRAE AEDG— Roofs insulation above deck	R-15	R-20	R-20	R-20	R-20	R-20	R-20	R-20	R-20	R-20	R-20	R-20	R-20	R-20	R-20
0.1–2007— Roofs insulation above deck	R-15	R-15	R-15	R-20	R-20	R-20	R-20	R-20	R-20	R-20	R-20	R-20	R-20	R-20	R-30

						Table 4.	window	v Values							
	1A	2A	2B	3A	3B	3C	4A	4B	4C	5A	5B	6A	6B	7 A	8A.
	Miami, FL	Houston, TX	Phoenix, AZ	Memphis, TN	El Paso, TX	San Franciseo, CA	Baltimore, MD	Albuquerque, NM	Seattle, WA	Chicago, IL	Colorado Springs, CO	Burlington, VT	Helena, MT	Duluth, MN	Fairbanks AK
Windows															
Passive Haus Window Specifications															
U-Value (Btu/h/ft2/ºF)	0.26	0.26	0.26	0.26	0.26	0.26	0.18	0.18	0.18	0.18	0.18	0.18	0.18	0.18	0.18
U-Value (W/m ² /K)	1.48	1.48	1.48	1.48	1.48	1.48	1.02	1.02	1.02	1.02	1.02	1.02	1.02	1.02	1.02
SHGC	0.25	0.25	0.25	0.39	0.39	0.39	0.39	0.39	0.39	0.49	0.49	0.49	0.49	0.49	0.49
VT	>0.50	>0.50	>0.50	>0.50	>0.50	>0.50	>0.50	>0.50	>0.50	>0.50	>0.50	>0.50	>0.50	>0.50	>0.50
WWR	<30%	<30%	<30%	<30%	<30%	<30%	<30%	<30%	<30%	<30%	<30%	<30%	<30%	<30%	<30%
Army WBDG— Window Specifications															
U-Value (Btu/h/ft ² /°F)	0.45	0.45	0.45	0.45	0.45	0.45	0.42	0.42	0.42	0.42	0.42	0.42	0.42	0.33	0.33
U-Value (W/m ² /K)	2.56	2.56	2.56	2.56	2.56	2.56	2.38	2.38	2.38	2.38	2.38	2.38	2.38	1.87	1.87
SHGC	0.25	0.25	0.25	0.37	0.37	0.37	0.39	0.39	0.39	0.39	0.39	0.39	0.39	NR	NR
VT	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR
ASHRAE 189.1 Window Specifications															
U-Value (Btu/h/ft2/ºF)	1.20	0.75	0.75	0.55	0.55	0.55	0.45	0.45	0.45	0.45	0.45	0.45	0.45	0.35	0.35
U-Value (W/m ² /K)	6.81	4.26	4.26	3.12	3.12	3.12	2.56	2.56	2.56	2.56	2.56	2.56	2.56	1.99	1.99
SHGC	0.25	0.25	0.25	0.25	0.25	0.25	0.35	0.35	0.35	0.35	0.35	0.40	0.40	0.45	0.45
VT	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR
ASHRAE 90.1-2007 Window Specifications															
U-Value (Btu/h/ft2/°F)	1.20	0.75	0.75	0.65	0.65	0.65	0.55	0.55	0.55	0.55	0.55	0.55	0.55	0.45	0.45
U-Value (W/m ² /K)	6.81	4.26	4.26	3.69	3.69	3.69	3.12	3.12	3.12	3.12	3.12	3.12	3.12	2.56	2.56
SHGC	0.25	0.25	0.25	0.25	0.25	0.25	0.40	0.40	0.40	0.40	0.40	0.40	0.40	NR	NR
VT	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR
Army Proposed															
Army Required															

Table 4. Window Values

Results for Climate Zone 3

Scenarios	Site Electricity Intensity (kWh/ m ²)	Site Electricity Reduction (%)	Site Gas Intensity (kWh/m^2)	ntensity Reduction		Site Total Energy Reductio n (%)
Baseline	219.81	0	144.38	0	1,853,140	0
ASHRAE 90.1 2010	178.49	18.79	120.3	16.68	1,520,394	18%
Baseline - 50%	106.21	51.68	58.7	59.34	839,120	55%

Package	Energy Reduction, %
Pre-1980 Baseline	0
Envelope Package	20.9
Infiltration Package	23.2
Lighting Package	26.3
HVAC Package	35.7
Energy Recovery Package	45.1
DHW Package	48.9
Internal Equipment Package	54.7

Results for Climate Zone 5

Scenarios	Site Electricity Intensity (kWh/ m ²)	Site Electricity Reduction (%)	Site Gas Intensity (kWh/m^2)	Site Gas Reduction (%)	Site Total Energy (kWh)	Site Total Energy Reduction (%)
Baseline	182.33	0	248.39	0	2,191,689	0
ASHRAE 90.1 2010	151.92	16.68	184.17	25.86	1,710,159	22%
Baseline plus 50%	90.57	50.33	72.66	70.75	830,580	62%

Package	Energy Reduction, %
Pre-1980 Baseline	0
Envelope Package	26.4
Infiltration Package	29.2
Lighting Package	31.4
HVAC Package	39.2
Energy Recovery Package	55.2
DHW Package	58.3
Internal Equipment Package	62.1

Scenarios	Site Electricity Intensity (kWh/ m ²)	Site Electricity Reduction (%)	Site Gas Intensity (kWh/m ²)	Site Gas Reduction (%)	Site Total Energy (kWh)	Site Total Energy Reduction (%)
Baseline	152.86	0	327.42	0	2,443,868	0
ASHRAE 90.1 2010	132.94	13.03	242.61	25.9	1,910,958	22%
Baseline - 50%	79.02	48.31	82.15	74.91	820,087	66%

Package	Energy Reduction, %
Pre-1980 Baseline	0
Envelope Package	26.9
Infiltration Package	30.0
Lighting Package	31.9
HVAC Package	39.0
Energy Recovery Package	60.6
DHW Package	63.4
Internal Equipment Package	66.4

Heating, Cooling and Lighting Power Energy Reduction

Scenario	Heating Energy Reduction,%		Cooling Energy Reduction, %			Lighting Energy Reduction. %			
	Reduction, /			Reduction, %			Reduction, %		
	c.z. 3	c.z. 5	c.z. 6	c.z. 3	c.z. 5	c.z. 6	c.z. 3	c.z. 5	c.z. 6
Base Case	34%	37%	34%	32%	31%	26%	19%	19%	19%
DER	86%	86%	87%	61%	62%	62%	59%	59%	59%

DER in Climate Zone 6

ik jusi : Gala in a second	7 Annual EU 15.91 45.50 6.35
NUMBOR 3.7 3.7 3.7 3.7 3.7 3.7 3.7 1.7 3.7 1.7 <th1.7< th=""> <th1.7< t<="" th=""><th>15.91 45.50</th></th1.7<></th1.7<>	15.91 45.50
NINECONCEQUIPIE 3.47 3.46	45.50
MA 64 64 65 65 63<	
pps a1 a1 a1 a2 a4 a2 a1 a2 a2 a2 a1 a2	
90006 61 63 63 64 62 136 126 126 126 126 630 64	0.24
5.20 5.25 5.27 5.20 7.20 6.49 6.46 6.25 6.37 5.40 5.21 12.5 6.07 6.07 5.34 6.37 6.07 11.68 6.07 11.68 6.07 11.68 6.07 11.68 6.07 11.68 6.07 11.68 6.07 11.68 6.07 11.68 6.07 11.68 6.07 11.68 6.07 11.68 6.07 11.68 6.07 11.68 6.07 11.68 6.07 11.68 6.07 11.68 6.07 <td>10.68</td>	10.68
12.0 9.07 0.0 1.7 4.9 4.13 4.39 4.21 4.22 5.43 6.47 11.46 62 Total Researce Breadform	0.34
Total Researce Breakdows dials * Issuer (Subject) * Issuer (Subj	79.02
Total Researce Breakdows dials * Issuer (Subject) * Issuer (Subj	
Alter * [] Jacung (Stafter:1) ?] [Advang (Stafter:2) ?] [] Addi (Stafter:2) ?] [] Addie (Stafter:2) ?] <th[] (stafter:2)="" ?]<="" addie="" th=""> [] Addie (S</th[]>	5
12.25 9.87 8.60 5.74 4.59 4.13 4.19 4.21 4.22 5.63 8.47 11.66	82.15
18.86 14.32 13.87 11.57 11.69 11.43 12.48 12.67 11.08 11.76 14.15 12.48 14	17