Energy Consumptions of Office Buildings Technical Analysis - Annex 61

Samir E. Chidiac, McMaster University Jordan Mansfield, McMaster University Simon Foo, PWGSC

> September 22, 2014 Tallinn, Estonia

Outline

- OBEPM Tool
- Model buildings
 - Geometry
 - Climate
 - Retrofit Scenarios
- Energy model of office buildings
- Model results
- Concluding remarks

OBEPM Tool

Hybrid model - EnergyPlus, Mathematics, and Energy balance principles

- 1. Developed representative office buildings
 - a) Geometry; shape and size
 - b) Zones; Number, size, distribution
 - c) Operation
 - d) Building attributes
 - e) ECMs
- 2. Monthly energy prediction model for a building
- 3. Yearly energy prediction model for a portfolio
- 4. Derive most effective ECM(s)
- 5. Decision tool

Monthly end uses energy consumption Models

- 1. Lighting;
- 2. Equipment;
- 3. DHW;
- 4. Fans;
- 5. Pumps
 - Chilled water loop supply pumps (CWLSP);
 - Condenser water loop supply pumps (CNDWLSP);
 - Hot water loop supply pumps (HWLSP);
- 6. Chiller;
- 7. Boiler.

3

McMaster University

Model – Geographic Location

Canada is divided into five climate zones (ASHRAE, 2007)

	ASHRAE	Design Temp	perature (°C)	Degree Days (18.3°C base)	
Location	Climate Zone	Heating DB 99%	Cooling DB 1%	HDD	CDD
Windsor	5A	-13.1	30.5	3444	434
Vancouver	5C	-3.3	24.4	2903	44
Ottawa	6A	-21.5	28.9	4523	238
Calgary	7	-25	26.6	5052	36
Iqaluit	8	-37.6	14.2	9924	0

7

Model – Geographic Location

Canada is divided into five climate zones (ASHRAE, 2007)

Model – Geometry & Size

Building Type	Number of Storeys	Total Floor Area (m ²)
Low Rise	2	9,000
Medium Rise	10	45,000
High Rise	18	81,000

- Pre-1980 Standard
- Baseline: Current Building Energy Standard in Canada (NECB 2011)
- 50% Energy Use Intensity Reduction or greater from Baseline (National Dream)

Energy Models of the buildings

- Floors area = 4,500 m²
- Aspect/orientation is 2:1 rectangular building with the long side facing north-south
- No basement floors
- Occupancy density of each model = 25 m²/person
- Occupancy schedule = 10 hours per day with no weekend occupancy
- Fan pressure rise is 300 Pa, 900 Pa, and 1,500 Pa for the small, medium and large office buildings, respectively
- Solar Heat Gain Coefficient was assumed to be 0.68 for all fenestration
- Equipment load will be maintained at 20 W/m²
- No gas process load

11

McMaste

Energy Models of the buildings

 $PVS_{NG} = \left(\frac{(N.G.\ Savings) * (N.G.\ unit\ cost)}{N.G.\ MARR - N.G.\ Growth}\right) \left(1 - \left(\frac{1 + N.G.\ Growth}{1 + N.G.\ MARR}\right)^{payback\ period}\right)$

Description	Value	References
Annual electricity unit cost (\$/kW·h) – Elect. unit cost	0.0923	(Hydro One Inc. , 2014)
Electrical annual growth rate – Elect. unit cost	2.54%	(Ontario Ministry of Energy , 2014)
Electrical Minimum Acceptable Rate of Return – <i>Elect.</i> <i>MARR</i>	6.00%	
Annual natural gas unit cost (\$/kW·h) – N.G. unit cost	0.2454	(Ontario Energy Board, 2014a)
Natural gas annual growth rate – N.G. Growth	1.00%	(Ontario Energy Board, 2014b)
Natural gas Minimum Acceptable Rate of Return – <i>N.G. MARR</i>	6.00%	
Payback Period (Years)	40	
		12

Energy Models – Scenario 1

Building Envelope

Equivalent fenestration U-Value = $4.5 \text{ W/m}^2 \cdot \text{K}$ with a 40% fenestration Wall U-Value = $1.21 \text{ W/m}^2 \cdot \text{K}$ Roof U-Value = $0.74 \text{ W/m}^2 \cdot \text{K}$ Roof solar absorptance = 0.8Infiltration rate = 1 ACH

Lighting

Lighting load = 17.8 W/m^2 with no daylighting.

HVAC

CAV system with no heating setback No economizer or heat recovery unit Boiler efficiency = 75% Chiller coefficient of performance (COP) = 2.5

13

McMast

Energy Models – Scenario 2 - NCEB

Building Envelope

Roof solar absorptance = 0.7Infiltration rate = 0.2 ACH

City	Overall Theri	Fenestration		
City	Walls	Roofs	Fenestration	(%)
Vancouver	0.315	0.227	2.4	40.0
Windsor	0.278	0.183	2.2	40.0
Ottawa	0.247	0.183	2.2	36.3
Calgary	0.210	0.162	2.2	32.4
Iqaluit	0.183	0.142	1.6	20.0

Lighting power density (LPD) in the NECB = 9.7 W/m^2 .

Daylighting is implemented

HVAC

Lighting

Boiler thermal efficiency = 83% Chiller COP = 6.1 at full load. HVAC system includes an economizer, heat recovery system, and heating setback. Low rise office building type has a CAV system Medium and High rise office building types use a Variable Air Volume (VAV) system with a turndown ratio of 0.5.

Energy Models – Scenario 2 - NCEB

1	5

McMast

McMaster University

Energy Models – Scenario 3 – 50% below

Building Envelope

Building Parameter	Value	Reference		
Equivalent	$1.02 M/m^2 K$	(ASUDAE 2012)		
Fenestration U	1.03 W/III .K	(ASHRAE, 2015)		
Fenestration	40%			
Wall U	0.183 W/m²·K	(NECB, 2011)		
Roof U	0.142 W/m²·K	(NECB, 2011)		
Roof Solar	0.9			
Absorptance	0.8			
Infiltration Rate	0.2 ACH	(NECB, 2011)		

Energy Models – Scenario 3 – 50% **below NCEB**

Lighting

Lighting power density (LPD) in the NECB = 5.0 W/m^2 . Daylighting is implemented

HVAC

Building Parameter	Value
Heating Setback	1 (Yes)
Economizer	1 (Yes)
Heat Recovery	1 (Yes)
VAV	0.3
Chiller COP	7.3
Boiler Efficiency	96%

Buildings Energy Consumptions – Current Energy Code (NECB 2011)

_		-				-
		Consumption (MW·h)				
Energy Model		Natural Gas	Electrical Total		EUI (MJ/m²)	Below Pre-1980
	Windsor_SC2_2st4500	233	880	1,113	445	66.1%
	Windsor_SC2_10st4500	302	4,784	5,086	407	67.0%
	Windsor_SC2_18st4500	485	9,681	10,166	452	65.6%
	Vancouver_SC2_2st4500	246	821	1,066	427	58.8%
	Vancouver_SC2_10st4500	38	4,425	4,463	357	63.8%
	Vancouver_SC2_18st4500	104	8,967	9,071	403	62.3%
	Ottawa_SC2_2st4500	425	870	1,295	518	65.7%
	Ottawa_SC2_10st4500	612	4,664	5,276	422	70.5%
	Ottawa_SC2_18st4500	816	9,418	10,234	455	69.5%
	Calgary_SC2_2st4500	347	880	1,227	491	67.0%
	Calgary_SC2_10st4500	394	4,919	5,313	425	68.6%
	Calgary_SC2_18st4500	641	9,765	10,406	462	66.6%
	Iqaluit_SC2_2st4500	656	796	1,451	581	71.2%
	Iqaluit_SC2_10st4500	1,628	4,592	6,220	498	72.7%
	Iqaluit_SC2_18st4500	2,042	9,336	11,378	506	72.5%

Buildings Energy Consumptions – Dream Retrofit

	Consumption (MW·h)					
Energy Model	Natural Gas	Electrica	l Total	EUI (MJ/m²)	Below Baseline	Present Value Analysis
Windsor_SC4_2st4500	24	663	687	275	-38.2%	\$916
Windsor_SC4_10st4500	27	3,748	3,775	302	-25.8%	\$2,178
Windsor_SC4_18st4500	54	7,330	7,384	328	-27.4%	\$4,354
Vancouver_SC4_2st4500	0	617 3 460	617 3 460	247	-42.2%	\$1,011 \$1,365
Vancouver SC4 18st4500	0	6.776	6.776	301	-25.3%	\$3.151
Ottawa_SC4_2st4500 Ottawa_SC4_10st4500 Ottawa_SC4_18st4500	171 261 104	653 3,658 7,123	824 3,920 7,226	329 314 321	-36.4% -25.7% -29.4%	\$1,054 \$2,367 \$5,136
Calgary_SC4_2st4500	122	683	805	322	-34.4%	\$939
Calgary_SC4_10st4500	89	3,805	3,894	312	-26.7%	\$2,368
Calgary_SC4_18st4500	103	7,216	7,319	325	-29.7%	\$4,933
lqaluit_SC4_2st4500 lqaluit_SC4_10st4500 lqaluit_SC4_18st4500	626 1,699 2,234	622 3,736 7,319	1,249 5,435 9,553	499 435 425	-14.0% -12.6% -16.0%	\$313 \$892 \$2,026

McMaste

Concluding Remarks

- 60 to 70% energy savings for Pre-1980 office buildings that have not conformed to current standard
- Up to 40% energy saving is still possible with dream retrofit for office buildings meeting NECB 2011.
- 50% reduction in energy consumption is not possible with current technology for office buildings that meet NECB 2011 requirements.
- Present value savings are too low to justify the implementation of dream retrofit.

23