

Energy in Buildings and Communities Programme

ANALYSIS OF INTERNATIONAL EXPERIENCES FROM CASE STUDIES WITH DEEP ENERGY RETROFIT

SCOPE OF THE WORK

- 1. To show successful renovation projects as <u>inspirations</u> in order to <u>motivate</u> decision makers and stimulate the market.
- 2. To support decision makers and experts with profound information for their future decisions.
- 3. To learn from these forerunner project by analysing the presented information.

CONTENTS OF THE PRESENTATION

- 1. Overview of the case studies
- 2. THE ANALYSES CARRIED OUT:
 - Energy saving strategies (which are climate dependent?)
 - Energy savings/reduction
 - Reasons for renovation/anyway measures
 - Co-benefits
 - Business models and funding sources
 - Cost effectiveness
 - Experiences/lessons learned
- 3. Recommendation

FBC	
Energy in Buildings and Communities Programme	

CASE STUDIES

COUNTRY	SITE	BUILDING TYPE	PICTURES
1.Austria	Kapfenberg	Social housing	
2.Germany	Ludwigshafen-Mundenheim	Multi-stories apartment	
3.Germany	Nürnberg, Bavaria	Multi-stories apartment	
4.Germany	Ostfildern	Gymnasium	
5.Germany	Baden-Württemberg	School	
6.Germany	Osnabrueck	School	
7.Germany	Olbersdorf	School	

CASE STUDIES

COUNTRY	SITE	BUILDING TYPE	PICTURES
8.Germany	Darmstadt	Office building	
9.Denmark	Egedal, Copenhagen	School	
10.USA	Grand Junction, Colorado	Office Building / Courthouse	
11. USA	Silver Spring and Lanham, Maryland	Federal Building/ Office	
12. USA	St. Croix. Virgin Islands	Office/Courthouse	
13. Estonia	Kindergarten in Valga	Kindergarten	
14. Latvia	Riga	Multi-family building	

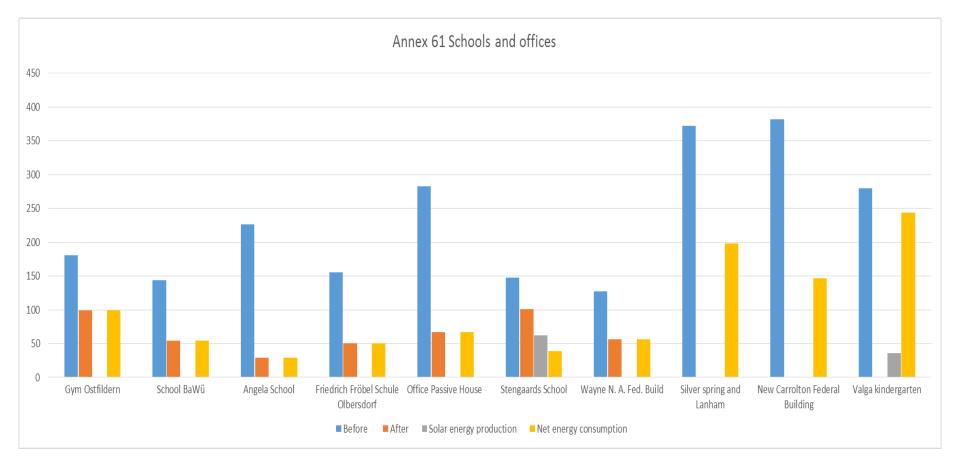
Analyses undertaken

- Energy saving strategies (which are climate dependent?)
- Energy savings/reduction
- Reasons for renovation/anyway measures
- Co-benefits
- Business models and funding sources
- Cost effectiveness
- Experiences/lessons learned

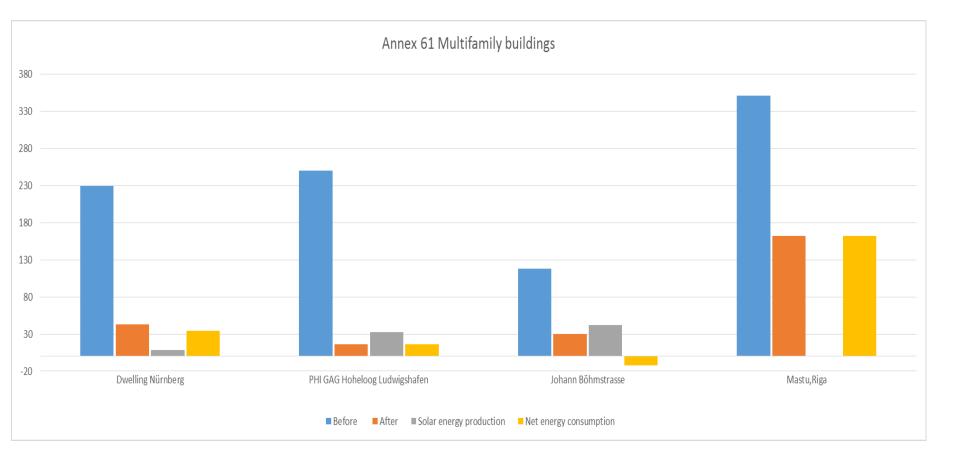
ENERGY SAVING STRATEGIES

	Wall	insulation Roof	hoot	n Insula Ne	tion wind	owlds inghts	jor jenco	A HERET	isl con	irol vert	tilation New New	system cooling in heat	No Support	ouple ouple ouple	district and head
1.Johann Böhmstrasse Austria	v	٧	٧	٧				٧		٧			٧	v	
2.PHI.GAG.Hoheloog.Ludwigshafen. GE	٧	٧	v	٧					v		٧			٧	
3. Nurnberg.GE	٧	v	v	٧				٧		v			٧		
4.Gym Ostildern. GE	٧	v		٧	٧	٧		٧							
5.School BaWû. GE	٧					v			v	v				٧	
6.Angela School. Osnabrueck.GE	v	٧	v	٧		v		v	v	v		٧			
7.Friedrich-Fröbel-Schule Olbersdorf. GE	v	v	V	v	v	v	v		v			٧			
8.Office Passive house. Darmstadt.GE	v	v	v	٧		v		v	v						
9.Stengårds school.DK	v					v		v	v	v		٧		v	v
10.USA. Colorado	v	v			v	v			v	v	v	٧		٧	
11.USA. Maryland		v		v		٧		v	v	v	v	٧	٧	v	v
12.USA. St. Croix				v		٧			v	v				v	v
13. Estonia	v	v	٧			v	v	v		v			٧		

>8



% **ENERGY REDUCTION**


	% Energy r	% Energy reduction Heat pump		PV	Solar
CASE STUDY	70 LIIEI BY I	eduction	neat pump	production	thermal
	Heating	Electricity			
1.Johann Böhmstrasse. Austria	74.8	x		92kWp	14 kWh/m²
2.PHI.GAG.Hoheloog.Ludwigshafen.GE	94	0		12.8 kWp	
3.Nurnberg. GE	86	0			х
4.Gym Ostildern.GE	51	2			
5.School BaWû.GE	70	x		28,7 KWp	
6.Angela School. Osnabrueck.GE	96	17	45.6kwh/m ²		
7. Friedrich-Fröbel-Schule Olbersdorf. GE	67	54	x		
8.Office Passive house retrofit. Darmstadt.GE	78	70			
9.Stengårds school.DK	34	22	х	220kwp	
10.USA. Colorado	100 (gas)	19	x	х	
11.USA. Silver Spring and Lanham/Maryland	47/	61	x	х	x
12.USA. St. Croix	10	0		х	
13.Estonia	87				х
14. Latvia	54	1			

X: missing data

Energy before and after - comparison plot

Energy before and after - comparison plot

ANYWAY MEASURES/ REASON FOR RENOVATION

ENERGY RELATED REASON	NON ENERGY RELATED REASON
High energy consumption leads to high energy cost. Fluctuation in annual cost	Poor appearance of the building due to the deterioration of the construction element of the building envelope.
Poor thermal comfort / Overheating	Historic preservation.
Air polluted. No indoor quality comfort	Unsatisfied technical condition of building envelope
Building does not comply with renewable energy goals	Deterioration of the interior finishing of the building
Research on energy efficiency in buildings	Poor architectural quality
Insufficient daylight	Change of layout of the occupied space needed /
	Out-dated working environment
Out-dated technical facilities	
The mechanical systems, plumbing, electrical, roofing, and elevators had long surpassed their useful life.	High-maintenance technology – costly to maintain
Condensation in external walls	Out-dated equipment
Air leaks - primarily in windows and a top-floor ceiling	Poor acoustic quality

CO-BENEFIT FROM ENERGY RELATED MEASURES	BENEFIT FROM NON-ENERGY RELATED MEASURES
Annual energy use reduction.	Historical preservation
Improved indoor environmental quality by installed MVHR	Architectural attraction by a modern facade. Environmental friendly construction improving the reputation of the building
Reduction of pollution by new exhaust air system.	New functional area for the occupants
Improvement of thermal comfort by tightness of the building	Creates/sustains jobs.
Reduction of heating energy by the connection to the district heating.	New plan design in the useful area. Increased living space Provide a pleasant, secure, and safe environment
Renewal of old heating and DHW system improve the operational comfort by the new centralized and automatically control system.	Better connection into/ to the building
Improved operational comfort by automatically controlled lighting and ventilation system.	Reduced energy costs for tenants/ Higher rent costs.
Energy demand reduction through insulation combined with heat pump.	Reduced ongoing maintenance
Use of sustainable construction practices.	Upgrade equipment
Daylight improvement.	Improvement of the acoustics
Reduces tons of CO2. Environmental contribution	Protect the building from the weatherization
Reduction of draughts by implementation of thermal glazing	Promotes overall energy awareness

BUSINESS MODELS AND FUNDING SOURCES

CASE STUDIES	BUSINESS MODELS AND FUNDING SOURCES			
1.Johann Böhmstrasse Austria	 Standard monthly "Maintenance and improvement <u>contribution</u>" by the tenants-funding model: For "Comprehensive energetic renovation" (requirements) Subsidy for: "implementation of ecological and sustainable measures" Subsidized feed-in tariff for electricity generated by PV Subsidy loans for social housing companies – 0.5 % - 25 years Austrian research program "Building of Tomorrow" supported 35% of the innovative cost (cost difference to standard renovation) 			
3. Nurnberg.GE	 Funding by the Bavarian Ministry of Economics in connection with the EU-Objective-2 program. 			
4.Gym Ostildern	 Self-financing With KfW-credit: financing-part of energetic refurbishment measures: 47 % 			
5.School BaWû	 Self-financing Stimulus package II, bank loan + self-financing, Heating through EPC. 			
6.Angela School. Osnabrueck GE	Owner and federal ministry for environment			
7. Friedrich-Fröbel-Schule Olbersdorf. GE	Federal ministry for environment through the funding program "Energie optimiertes Bauen and EnEff:Schule"			
8.Office Passive house retrofit	The retrofit financed by the building owner			
9.Stengårds school.DK	Loan at low interest rates for Danish municipalities			
10.USA. Colorado	 American Recovery and Reinvestment Act of 2009 Agency provided funds (RWA) ARRA funding time-frame for completion. 			
12. USA. St. Croix	• The ESPC funding model is based on 3 rd party			
13.Estonia	 EU supported Project Local government fund 			
14. Latvia	 RENESCO, EU grants (European Reconstruction and Development fund) Loans: Citadele Bank - commercial loan; Dutch International Guaranties for Housing (DIGH) - subordinated loan 			

COST EFFECTIVENESS

CASE STUDIES

COST EFFECTIVENESS

1.Johann <u>- S</u> Böhmstrasse En

	- Simple pay-back time
2	Energy related investme

Böhmstras Austria

Energy related investment costs	€	1.245.20	01,000
Energy savings per year - electricitity		€ 13.91	L1,000
Energy savings per year - district heating		€ 25.73	4,000
Energy Savings per year - total		€ 39.64	15,000
Simple pay-back time		31	years
- Dynamic investment method			
Results stated below are based on follow	vin	g assump	tions:
Inflation rate per year:			2,2%
Interest rate:			3,75%
Interest rate inflation-adjusted:			1,52%
Price rise for electricity per year:			3%
Price rise for electricity per year inflation	-a	djusted:	0,78%
Price rise for district heating per year:			3%
Price rise for district heat. per year inflati	ior	-adjuste	d 0,78%
		-	

 Internal interest rate: 	1,52% per year
Cash value:	€ 254.362
 Annuity method 	
Annuity:	€ 14.266 per year for 30 years
Annuity factor:	0,05
 Dynamic amortization per 	eriod 26 years

- Investment costs of energy saved:

For an operation period of 30 years of most important measures are stated (without maintenance and replacement costs):

- Reduction of transmission losses € 0,08 /kWh
- Reduction of ventilation losses (MVHR)

€0,25 / kWh

- Reduction through solar thermal panels
 € 0,05 / kWh
- Reduction through PV panels € 0,10 / kWh

- Life cycle cost assessment (LCCA)

Comp	oonent / Er	nergy cons	umption	Investm	ent cost	Investment cost [€/m ² -GFA]	Annual cost [€/m ² -GFA/y]
	Heating DHW Cooling			eating 77.068 €		27,09	0,27
				57.600	e	20,25	0,20
					E	0,00	0,00
ST3	Auxiliaries	233.000	E	81,90	0,82		
	Lighting Ventilation				E	0,00	0,00
				171.616	E	60,32	0,30
	Common appl.			E	0,00	0,00	
	Roof	711	m²	155	€/m ² -element	38,74	0,00
Envelope	Facade	1463	m²	260	€/m ² -element	133,70	0,00
N.	Win.	354	m²	609	€/m ² -element	75,78	0,00
_	Floor	711	m²	-	€/m ² -element	0,00	0,00
uu	Heating						1,17
tnergy consumption	DHW					2,54	
191	Cooling						-
8	Electric	tity (mis c.	}				3,80
				1.245.455	Total	438	9,10

CASE STUDIES	COST EFFECTIVENESS			
6.Angela School.GE	 Interest rate: 3.43% (government bond) Present value: <u>Investment costs</u> Building measures Technical measures without ventilation Ventilation Sum investment costs <u>Maintenance costs</u> Heat pump and building automation Ventilation and heat recovery Sum maintenance costs	- 303 k€ - 279 k€ - 600 k€ - 1.182 k€ - 59 k€ - 119 k€ - 178 k €	Energy costs reduction Gas (and vegetable oil) Electricity without ventilation Electricity for ventilation Sum energy costs reduction Water Total	663 k€ 0,1 k€ - 42 k€ 621 k€ - 13 k€ - 752 k€
9Stengårds school.DK	<u>Economical saving</u> Net heating saving: Electricity saving: Total saving: Total energy investment: Simple payback time:		358.849 kWh 603.418 kWh	43.351 Euro/year 178.191 Euro/year 221.541 Euro/year 2.437.452 Euros 11 years

ENERGY

Mainly the energy for **heating is halved** by the refurbishment of the building envelope

Threefold reduction of the heating energy by the new connection to district heating.

Energy reduction by approximately 80% through insulation combined with heat pump.

The improvement of all specific technologies contributes in reducing energy consumption for heating and cooling.

Electricity consumption can be reduced through passive solar building design and/or solar technologies.

Energy should also be reduced by means of demand side measures.

Energy exchange between buildings with different user/load profiles offer potential for further energy reduction.

Plus-energy standard for multi-story buildings can been achieved

High heat demand due to the fact of the decreasing of the HR ventilation efficiency

Refurbishment with passive house components leads a reduction up to factor 10 of the former heating demand.

It is always more challenging to implement new and innovative technologies and solutions in existing buildings comparing to new buildings.

Reduction of electricity production from oil, leads to a reduction of CO₂, significant in an island environment .

USE AND COMFORT

Significant improvement of the indoor air quality through ventilation system.

The indoor air quality increased strongly, a more stable humidity and a lot less pollution was achieved.

The building systems provide a high level of temperature controllability (with a digital thermostat).

Space utilization changes: new ground floor design.

New layout of the occupied space was integrated in the planning process from the beginning.

Too dry air from high ventilation rates

Negative aspects in the light shading due to automatic jalousie

A VOC sensor has to be installed in some classroom to reduce the exceed CO₂

USER BEHAVIOUR

The human behaviour play a key role in the energy consumption. Occupants behaviour must be documented.

Heating consumption is higher than calculated due to user behaviour and, higher looses.

The energy consumption& Indoor comfort decreased significantly by **user training programs** and improved documentation for common IT control equipment.

The positive aspects lead to the fact that more users are aware of energy saving.

RECOMMENDATIONS

Decisions made in early project stages have strong influence on energy performance and costs.

The planning for heating system, ventilation, sun protection and lighting showed the potential for optimization

Projects pursuing net zero energy should consider these 3 stages:

- Stage 1 occupant engagement for energy use, including IT representatives
- Stage 2 Investment of deep energy retrofit
- Stage 3 After 1-year of post occupancy install renewable resources to offset tracked energy demand.

Innovative business models for Deep Energy Retrofit have to be developed.

Use of an ESPC business/funding model for rapid implementation of the project

Further development of high efficient energy retrofit will be the most economical standard to refurbish buildings

Thank you for your attention!

Questions?

