Track 5: ProjectSession 4: Achieving Deeper EnergyFinancingSavings in Financed Projects

How to achieve Deep Energy Retrofit in a cost effective way?

Dr. Alexander Zhivov US Army Engineer Research and Development Center Mr. Ruediger Lohse Climate Protection and Energy Agency of Baden Wurtenberg, Germany August 12, 2015

Phoenix Convention Center • Phoenix, Arizona

Annex 61 Business and Technical Concepts for Deep Energy Retrofit of Public Buildings

Deep Energy Retrofit (IT-Tool)

Energy Exchange: Federal Sustainability for the Next Decade

Receptors

- Executive decision-makers and energy managers of public and governmental administrations
- ESCOs
- Financing industries
- Energy utility companies
- Designer-, architect- and engineer-companies
- Manufacturers of insulation, roofing materials, lighting, controls, appliances, and HVAC and energy generation equipment, including those using renewable sources.

Subtasks

- **Subtask A:** Bundles of Technology: Prepare and evaluate case studies on existing deep energy retrofit concepts. Develop a guide for achieving financially attractive deep energy retrofits of buildings and building communities.
- **Subtask B** Develop business models for deep energy retrofit of buildings using combined government/public and private funding

Subtasks (Continued)

- Subtask C: Demonstrate selected deep energy retrofit concepts using combined government/public and private funding, and prepare case studies describing completed and/or partially completed projects.
- Subtask D: Develop an IT-tool for decision-makers and ESCOs that emphasizes low-risk approaches for early stages of design and decision-making.

- Governments worldwide are setting more stringent targets for energy use reductions in their building stocks
- To achieve these goals, there must be a significant increase in both the annual rates of building stock refurbishment and energy use reduction, for each project (EU: refurbishment rate of 3% p.a., USA: 3% p.a. site energy reduction compared to CBECS 2003 through 2015 and 2.5% between 2015 and 2025)

Current Minimum Energy Related Requirements

Country	Building Energy	Building Envelope	HVAC	Lighting
Austria	OIB Directive Nr.6	OIB RL 6, 2011	EN 1507, EN 12237	EN 12464-1 and -2
			ÖNORM H 5057, OIB RL 6, 2011	EN 15193
China	GB50198-2005	GB50198-2005,	GB 50243-2002	GB50034-2004
		GB/T 7016-2008	GB50736-2012	
			GB50198-2005	
Denmark	Danish Building	Danish Building Regulation	Standard 447	DS/EN ISO 12464-1
	Regulation 2010,	2010	Standard 452	
	DS Standard 418			
Estonia	Ordinance No. 63. RTI,	EVS-EN ISO 10077, EVS-EN	EVS-EN 13779, EN 12237	Ordinance No. 70. RT I,
	18.10.2012, 1, 2012;	1026	Ordinance No. 70. RT I,	09.11.2012, 12
	Ordinance No. 68. RTI,	EVS-EN 12207	09.11.2012, 12	
	05.09.2012, 4, 2012	EVS-EN 12208		
Germany	DIN 18599-1; EnEV	EnEV 2014, DIN 18361	EnEV 2014, DIN V 18599-2 and	DIN 18599-4,
	2014	DIN 18355 , DIN V 18599/2	7	DIN 5035 T 1- 14
		DIN 4102, DIN 4108	DIN 1946-6, DIN EN 13779	
		DIN EN 13162, DIN EN 13163	DIN 24192 II/III/IV	
		DIN EN 13164, DIN EN 13165	DIN 4108-6, DIN 4701-10,	
		DIN EN 13167, DIN EN 13171	EnEV 2009/2014	
UK	BS EN 15603:2008	Building Regulations-	BS EN 15727:2010	BS EN 12464-1:2011
		Conservation of Fuel and Power	BS 5422:2009	
		in New Buildings Other Than	Non-Domestic Building Services	
		Dwelling: Part L2A.	Compliance Guide:2013	
USA	ASHRAE Std 90.1 2010	ASHRAE Std 90.1 2010	ASHRAE Std 90.1 2010	ASHRAE Std 90.1 +IESNA
	ASHRAE Std 100 2015			recommended practices,
				10 th edition 2010

Examples of calculated % of energy use reduction with major renovation projects from pre-1980 baseline to current minimum energy standards

- USA :
 - Barracks (c.z. 1A 8) EUI_{site}: 8-16%
 - Administrative building: EUI_{site}: 8-22%
- German Administrative Buildings (c.z. 5A) EUI_{site}: **40**%
- Danish School (c.z.6A): EUI_{site}: 19%;
- Austrian residential building (c.z. 5A): EUI_{site}: **29**%

EU Energy Performance of Buildings Directive (EPBD 2010)

- Member States shall develop policies and take measures such as setting targets to stimulate the transformation of buildings to be <u>refurbished to a</u> <u>nearly zero-energy condition</u>.
- A Member State <u>shall not be required to set minimum energy performance</u> <u>requirements that are not cost-effective</u> over a building' sestimated economic lifecycle.
- A nearly zero-energy building is defined as "a building that has a very high energy performance. The nearly zero or very low amount of energy required should be covered to a very significant extent by energy from renewable sources, including energy from renewable sources produced on-site or nearby."
- The term "high performance building" (as used in Austria, Germany, the Czech Republic, and Denmark) was developed by the Passivhaus Institute (PHI) for the German building market, and has the same definition as "nearly zero-energy."

Annex 61 Objectives

- To provide a framework and selected tools and guidelines to significantly reduce energy use (by more than 50%) *public buildings* <u>undergoing major renovation</u>
- To gather and, in some cases, research, develop, and demonstrate <u>innovative and highly effective bundled packages of ECMs</u> for selected building types and climatic conditions
- To develop and demonstrate <u>innovative, highly resource-efficient</u> <u>business models for retrofitting/refurbishing buildings</u> using appropriate combinations of public and private funding

Deep Energy Retrofit (DER) is a <u>major building</u> <u>renovation project</u> in which <u>site energy use</u> intensity has been <u>reduced by at least 50%</u> <u>(including plug-loads)</u> from the pre-renovation baseline.

How to Achieve DER ? European Experience

Measure	Germany	Austria	Denmark
Wall insulation	12-24 cm (0.20-0.10 W/m ² K)	16 -20 cm (0.20 - 0.10) W/m²K	15-30 cm
Roof insulation	20 – 40 cm (0.20- 0.10 W/m ² K)	20 – 40 cm (0.20- 0.10 w/m²K)	20-40cm
New Windows	0.8-1.1 W/m² K	triple glazing (0.70 – 0.90 W/m ² K)	U-value down to 0.5-1.2 W/m ² K
Unheated basement ceiling insulation	5-20 cm (0.25- 0.10 W/m²K)	10 – 20 cm (0.20 – 0.10 W/m²K)	10-20cm
Reduction of thermal bridges	Reduction as good as reasonably possible		<u>Foundation:</u> < 0.15W/mK <u>Windows:</u> < 0.8-0.5 W/mK
Improved building envelope air tightness	n50 value = 1.0 1/h - 0.6 1/h (Low- energy buildings + (Passive houses)	n50 value = 1.0 1/h - 0.6 1/h (Low-energy buildings + Passive houses)	q(50pa): from 4l/s/m² to 1.5l/s/m²
Ventilation system heat recovery	Heat recovery rate: 65 – 80%	Heat recovery rate 65 – 80%	SEL: down to:1.5-1.2kJ/m ³
Solar Thermal Collectors for DHW	Dwellings: 3- 5 m ² /+500- 800 l storage per residential unit, NRB with 2- 3 m ² per shower unit + 300- 400 l/ storage per unit	In some provinces (e.g. Styria) residential buildings are obliged to have solar thermal collector	Dwellings: 3-5m²
Advanced lighting system design with day- lighting controls	Dwellings: 10- 12 m ² high efficient solar evacuated tube collector + > 1,000 l storage/ unit s		With daylight and dimming control.

Annex 61 DER Case Studies

COUNTRY	SITE	BUILDING TYPE	PICTURES
1.Austria	Kapfenberg	Social housing	
2.Germany	Ludwigshafen- Mundenheim	Multi-stories apartment	
3.Germany	Nürnberg, Bavaria	Multi-stories apartment	
4.Germany	Ostfildern	Gymnasium	
5.Germany	Baden-Württemberg	School	
6.Germany	Osnabrueck	School	
7.Germany	Olbersdorf	School	

COUNTRY	SITE	BUILDING TYPE	PICTURES
8.Germany	Darmstadt	Office building	
9.Denmark	Egedal, Copenhagen	School	
10.USA	Grand Junction, Colorado	Office Building/ Courthouse	
11. USA	Silver Spring and Lanham, Maryland	Federal Building/ Office	
12. USA	Intelligence Community Campus, Bethesda, MD	Administrative buildings	Centrum Bridrice Hall Hall Hall Centrum Hall Hall Hall Hall Hall Hall Hall Hal
13. USA	St. Croix. Virgin Islands	Office/Courthouse	
14. Estonia	Kindergarten in Valga	Kindergarten	
15. Latvia	Riga	Multi-family building	

"Core Technology" Bundle for DER

Category	Name					
	Roof insulation					
	Wall insulation					
	Slab Insulation					
	Advanced Windows					
Building Envelope	Insulated Doors, Vestibules					
	Thermal bridges remediation					
	Air tightness					
	Water/Vapor Barriers					
	BE Quality Assurance					
Lighting and Electrical Systems	Lighting design and efficient technologies and controls, efficient					
Lighting and Electrical Systems	motors, VFD drives					
	Smaller sized High performance fans, furnaces, chillers, boilers,					
	etc.					
	DOAS					
HVAC	HR (dry and wet)					
	Duct insulation					
	Duct air tightness					
	Pipe insulation					

Building Models used by the Modeling Team

USA, ERDC Climate Zones 1-8

Barracks

Office, Battalion HQ

Estonia, TTU

Public housing, Climate zone 6A

USA, ME Group

Dormitory, Climate zone 5B

UK, Reading University

Administrative Building, Climate zone 4A

Building Models used by the Modeling Team

Germany, KEA Germany, PHI

Austria, AEE

Denmark, Danish Building Research Institute, SBi

USA, NREL

School Building, Climate Zone 5A

Public housing, Climate Zones 4A and 5A

School Building, Climate zone 5A

Educational Building Complex, Zone 3C

USACE Recommendations for High Performance Buildings

ltem	Unit	c.z. 1	c.z. 2	c.z. 3	c.z. 4	c.z. 5	c.z. 6	c.z. 7	c.z. 8
Roof, U-value	BTU/(h*ft ^{2*} °F)	0.029	0.025	0.022	0.022	0.02	0.0167	0.0154	0.0133
Wall, U-value	BTU/(h*ft ^{2*} °F)	0.067	0.067	0.05	0.04	0.033	0.029	0.025	0.02
Wall below grade, U-value	BTU/(h*ft ^{2*} °F)	0.2	0.1	0.10	0.067	0.067	0.05	0.04	0.028
Floors over unconditioned space U-Value	BTU/(h*ft ^{2*} °F)	0.1	0.0416	0.0416	0.033	0.033	0.025	0.022	0.020
Windows (assembly) thermal transmittance, U-Value	BTU/(h*ft²*ºF)	<0.35	<0.35	<0.3	<0.3	<0.27	<0.24	<0.22	<0.18
Windows, SHGC		<0.25	<0.25	0.25	<0.3	<0.4	NR	NR	NR

USACE Proposed Insulation Values Compared

Climate Zone	1 A	2A	2B	3A	3B	3C	4A	4B	4C	5A	5B	6A	6B	7 A	8A
Walls (in order from most to least stringent)															
Wall Insulation Passiv DER R-value	R-19+ R7.5ci	R-19+ R15ci	R-19+ R15ci	R-19+ R20ci	R-19+ R20ci	R-19+ R10ci	R-19+ R25ci	R-19+ R25ci	R-19+ R20ci	R-19+ R30ci	R-19+ R30ci	R-19+ R40ci	R-19+ R40ci	R-19+ R50ci	R-19+ R50ci
WBDG, Army specs— Steel-Framed Walls	R-13+ R7.5ci	R-13+ R12.5ci	R-13+ R12.5ci	R-13+ R12.5ci	R-13+ R12.5ci	R-13+ R18.8ci	R-13+ R18.8ci	R-13+ R18.8ci	R-13+ R18.8ci						
90.1-2010 addenda bb— Steel-Framed Walls	R-13+ R7.5ci	R-13+ R7.5ci	R-13+ R7.5ci	R-13+ R7.5ci	R-13+ R7.5ci	R-13+ R7.5ci	R-13+ R10.0ci								
189.1–2009— Steel-Framed Walls	R-13+ R5.0ci	R-13+ R5.0ci	R-13+ R5.0ci	R-13+ R5.0ci	R-13+ R5.0ci	R-13+ R5.0ci	R-13+ R10.0ci								
ASHRAE AEDG— Steel-Framed Walls	R-13.0	R-13.0	R-13.0	R-13+ R3.8ci	R-13+ R3.8ci	R-13+ R3.8ci	R-13+ R7.5ci	R-13+ R21.6ci							
90.1–2007— Steel-Framed Walls	R-13.0	R-13.0	R-13.0	R-13+ R3.8ci	R-13+ R3.8ci	R-13+ R3.8ci	R-13+ R7.5ci								
Roofs (in order from most to least stringent)															
Roof Insulation Passi DER R-value	R-25	R-30	R-30	R-35	R-35	R-25	R-45	R-45	R-35	R-55	R-55	R-70	R-70	R-80	R-90
WBDG, Army specs— Roofs insulation above deck	R-25	R-25	R-25	R-25	R-25	R-25	R-30	R-30	R-30	R-30	R-30	R-40	R-40	R-40	R-40
90.1-2010 addenda bb— Roofs insulation above deck	R-20	R-25	R-25	R-25	R-25	R-25	R-30	R-35	R-35						
189.1–2009— Roofs insulation above deck	R-20	R-25	R-25	R-25	R-25	R-25	R-25	R-25	R-25	R-25	R-25	R-30	R-30	R-35	R-35
ASHRAE AEDG— Roofs insulation above deck	R-15	R-20	R-20	R-20	R-20	R-20	R-20	R-20	R-20	R-20	R-20	R-20	R-20	R-20	R-20
90.1–2007— Roofs insulation above deck	R-15	R-15	R-15	R-20	R-20	R-20	R-20	R-20	R-20	R-20	R-20	R-20	R-20	R-20	R-30

Insulation level for different wall-types (Example for c.z. 5)

ltem	Component	R	ecommendation		
		Assembly Max (2)	Min R-Value (2)		
Roof	Insulation Entirely Above Deck		R-50ci		
	Metal Building	U-0.020	R-13 + R-13 + R-34ci		
	Vented Attic and Other		R-60		
	Mass		R-30ci		
	Metal Building		R-19 + R-17ci		
Walls	Steel Framed	0-0.033	R-19 + R-20ci		
	Wood Framed and Other		R-19 + R-14ci		
	Below Grade/Basement	U-0.067	R-15ci		
Floors Over	Mass		R-16 Spray Foam + R-11ci.		
Unconditioned Space	Steel Joist	U-0.033	R-16 Spray Foam + R-13ci.		
	Wood Framed and Other		R-19 + R-10ci.		
	Unheated	F-0.54	R-10 for 24 in.		
Slab-on-Grade	Heated	F-0.44	R-15 for 36 in. + R-5ci below		

Parameter	c.z. 1	c.z. 2	c.z. 3	c.z. 4	c.z. 5	c.z. 6	c.z. 7	c.z. 1
Thermal transmittance, U-value, BTU/(h°F ft ²	<0.35	<0.35	<0.30	<0.30	<0.27	<0.24	<0.22	<0.18
SHGC	<0.25	<0.25	<0.25	<0.30	<0.40	NR	NR	NR

Core Technology Bundle Compared

Passive House Institute

- Energy Target: heating < 15kWh/a (site energy), total < 120kWh/a ,
- Insulation levels for BE components <
 0.15 W/(m² K) walls and roofs
- Window characteristics < 0.85 W/(m² K)
- BE air tightness < 0.6ACH @50Pa
- Thermal bridges mitigation
- HR from return air Eff > 75%
- Project component s certification
- Building post occupancy certification

DER

- Site energy Target: 50% from the baseline, but better then the minimum national standard
- Insulation levels for BE components by climate zone
- Window characteristics by climate zone
- BE air tightness (e.g., 0.15 cfm/ft2
 @75Pa USA)
- Thermal bridges mitigation
- DOAS
- HR from return air
- Duct air tightness and insulation levels (current national standards)
- Hot and cold water pipe insulation
- Lighting levels and LPD
- Project Delivery Quality Assurance

+ more than 400 other EEMs

IEA ECBS Annex 46

Subtask B

EFFICIENT TECHNOLOGIES AND MEASURES FOR BUILDING RENOVATION

Annex 61 DER Guide - Outline

- Introduction
- What is Deep Energy Retrofit
- Energy efficiency technologies and strategies
- Core technologies for DER
- Building Envelope
 - Wall and roof cross-sections
 - Insulation types and levels for different climate conditions
 - Thermal Bridges
 - Window types and characteristics for different climate conditions
 - Air barrier requirements
 - Water and Vapor control for different climate conditions
- Lighting systems
- HVAC systems : core requirements to energy efficiency of equipment, HR, ducts and pipes

Annex 61 DER Guide - Outline

- Introduction
- What is Deep Energy Retrofit
- Energy efficiency technologies and strategies
- Core technologies for DER
- Building Envelope
 - Wall and roof cross-sections
 - Insulation types and levels for different climate conditions
 - Thermal Bridges
 - Window types and characteristics for different climate conditions
 - Air barrier requirements
 - Water and Vapor control for different climate conditions
- Lighting systems
- HVAC systems : core requirements to energy efficiency of equipment, HR, ducts and pipes

Thermal Bridges

Details of Major Magnitude

- 1. At Eaves/Ridge
- 2. Window and Door Fitting Head, Sill and Jamb 2.
- 3. At Projections, Shades Or Intermediate Floors
- 4. Internal Walls to External Walls
- 5. Intermediate Floors
- 6. At Grade

Details of Minor Magnitude

- 1. Wall Corner Never Usually an Issue
 - . Threshold or Door
- 3. Duct and Service Connections
- 4. Penetrations at Installations in Roof;

PV or Water Tanks

Example of Window Replacement Sequencing (with improved insulation, air and thermal barriers)

Thermal Bridge Mitigation

Typical detail poor thermal bridge

Insert thermal break

Wrap the parapet

Building Air Tightness

Country	Source	Requirement*	cfm/ ft ² at 75Pa
Austria	OIB RL 6, 2011 for buildings with mechanical ventilation	1.5 1/h at 50 Pa	0.28
Germany	DIN 4108-2	1.5 1/h at 50 Pa	0.28
USA	ASHRAE Standard 90.1 - 2013 USACE ECB for all buildings [21]		0.25
USA	USACE HP Buildings and DER proposed requirement		0.15
υк	TS-1Commercial Tight	2 m ³ /h/m ² at 50 Pa	0.14
CAN	R-2000	1 sq in EqLA @10 Pa /100 sq ft	0.13
Germany	Passive House Std	0.6 1/h at 50 Pa	0.11

Based on four-story building, 120 xntru@exthance@etableSustainability for the Next Decade

Lighting – Improved Design and Technology

Lighting Design Guide for Low Energy Buildings - New and Retrofits

Improved Design Reduced illuminance Reduced electrical power

RECOMMENDED LIGHTING POWER DENSITY AND ILLUMINANCE VALUES

Space Type	Target Illuminance	Target LPD
Common Spaces		
- Conference Room	40 fc	0.80 W/ft
- Corridor	10 fc	0.50 W/ft2
- Dining	20 fc	0.60 W/ft2
- Dishwashing/ Tray Return	50 fc	0.65 W/ft2
- Kitchen/ Food Prep/ Drive Thru	50 fc	0.65 W/ft2
- Living Quarters	5-30 fc	0.60 W/ft2
- Mechanical/ Electrical	30 fc	0.70 W/ft2
- Office (Open)	30-50 fc	0.70 W/ft2
- Office (Enclosed)	30-50 fc	0.80 W/ft2
- Reception/Waiting	15-30 fc	0.50 W/ft2
- Restroom/ Shower	20 fc	0.80 W/ft2
- Server Room	30 fc	0.85 W/ft2
- Serving Area	50 fc	0.70 W/ft2
- Stair	10 fc	0.50 W/ft2
- Storage (general)	10 fc	0.50 W/ft2
- Storage (dry food)	10 fc	0.70 W/ft2
- Telecom / Siprnet	50 fc	1.20 W/ft2
- Vault	40 fc	0.70 W/ft2
Training		
- Readiness Bay	40 fc	0.75 W/ft2
- Training Room (Small)	15-30 fc	0.70 W/ft2
Vehicle Maintenance		
- Consolidated Bench Repair	50 fc	0.60 W/ft2
- Repair Bay/ Vehicle Corridor	50 fc	0.85 W/ft2

Energy Exchange: Federal Sustainability for the Next Decade

Advanced HVAC Systems

- Dedicated outdoor air system (DOAS)
- Heating and Cooling equipment per current national standard (e.g., ASHRAE 90.1-2013)
- Heat recovery (sensible and latent) > 80% efficiency
- Duct air tightness class C
- Hot and chilled water pipes insulation per current national standard

- Detailed technical specification, against which tenders will be made, and verification of understanding of these specifications by potential contractors,
- Specification in SOW/OPR of areas of major concern to be addressed and checked during the bid selection, design, construction, commissioning and post-occupancy phases;
- Clear delineation of the responsibilities and qualifications of stakeholders in this process.

 $\Delta C = NPV * \Delta First Cost ($) + NPV * \Delta Maintenance ($) + NPV * Replacement ($) + NPV * \Delta Energy ($).$

$$NPV = \frac{(1+i)^{N} - 1}{i \cdot (1+i)^{N}}$$

NPV = Net Present Value function
N = study life in years
i = interest or discount rate

 Δ First Cost_{budget} = SR_{energy} · (Δ Energy Cost_{annual}) + SR_{maint} · (Δ Maintenance)

Examples of SR or selected economic project life, interest, discount and escalation rates.

		Economic L	.ife (yrs)	5	10	15	20	25	30	35	40	45	50
	Interest	Discount	Escalation										
1	0%	0%	0%	5.0	10.0	15.0	20.0	25.0	30.0	35.0	40.0	45.0	50.0
2	6%	0%	0%	4.2	7.4	9.7	11.5	12.8	13.8	14.5	15.0	15.5	15.8
3	6%	0%	3%	4.6	8.7	12.4	15.9	19.2	22.5	25.8	29.2	32.8	36.6
4	6%	0%	6%	5.0	10.3	16.0	22.4	29.7	38.5	48.9	61.7	77.5	97.0
5	6%	2%	0%	4.2	7.4	9.7	11.5	12.8	13.8	14.5	15.0	15.5	15.8
6	6%	2%	3%	4.6	8.6	12.3	15.6	18.6	21.5	24.3	27.0	29.8	32.5
7	6%	2%	6%	5.0	10.2	15.6	21.5	28.0	35.4	43.7	53.3	64.5	77.7
8	6%	4%	0%	4.2	7.4	9.7	11.5	12.8	13.8	14.5	15.0	15.5	15.8
9	6%	4%	3%	4.6	8.6	12.1	15.3	18.1	20.6	23.0	25.1	27.1	29.0
10	6%	4%	6%	5.0	10.1	15.3	20.7	26.5	32.5	39.0	46.0	53.6	61.9
11	6%	6%	0%	4.2	7.4	9.7	11.5	12.8	13.8	14.5	15.0	15.5	15.8
12	6%	6%	3%	4.6	8.6	12.0	15.0	17.6	19.8	21.8	23.4	24.9	26.2
13	6%	6%	6%	5.0	10.0	15.0	20.0	25.0	30.0	35.0	40.0	45.0	50.0
14	6%	8%	0%	4.2	7.4	9.7	11.5	12.8	13.8	14.5	15.0	15.5	15.8
15	6%	8%	3%	4.6	8.5	11.9	14.7	17.1	19.1	20.7	22.1	23.2	24.1
16	6%	8%	6%	5.0	9.9	14.7	19.3	23.7	27.8	31.7	35.2	38.5	41.5

Questions, comments??