Barracks 630: A Deep Energy Retrofit Case Study at the Presidio of Monterey

US Army Garrison, Presidio of Monterey

Barracks Natural Gas Energy Usage

Our barracks are significant energy users.

32% of our square footage but 58% of our gas usage

Barracks 630

630 Barracks

Energy Modeling (Site Energy) 140 26 kBTU/SF, 120 80% decrease 100 80 60 40 20 0 -20 -40 DOAS (Radiant Heat Only Drainwater the Padkage DOAS Radiant Heat DX Reduced Occupation ASHRAF 90.1200A standard Retroft Envelope Pattage Lighting Package Equipment Package fuelcell Package Solar HW 30% Package Solar HW 10% Package Equipment Package DOAS Radiant Heat Cool Equipment Package HUAC Package DHMP 201288 Existine Baseline ■ Lighting ■ Equipment ■ Fans ■ Pumps ■ DHW ■ Fuel ■ Elec Gen Heating Cooling HW Gen

How do you reduce EUI by 80%?

- Continuous air and thermal barriers
- Dedicated outside air w/ heat recovery wheel
- Low-temperature radiant heating
- High efficiency boilers
- Heat recovery on drain lines

- Solar Thermal for 70% of domestic load
- Grey-water harvesting and re-use

630 Barracks - Rendering

630 Barracks – 90% complete

Haz-Mat and interior demo

Exterior framing and sheathing

Exterior vapor barrier

Exterior insulation and plaster

Finish coat of plaster

Thermal Barrier

Air Barrier and Continuous Insulation

Labor intensive process for exterior insulation

Rasping of exterior insulation

Under-floor insulation in crawlspace

Windows

This is what we wanted...

This is what we got.

Window Mock-up

¹/₄" gap around window

Backer rod in gap

Caulk serves as our air barrier

Construction QA – Air Leakage Testing

US Army Corps of Engineers® Engineer Research and Development Center

U.S. Army Corps of Engineers Air Leakage Test Protocol for Building Envelopes

Version 3 - May 11, 2012

Air Leakage Test

		Combined	Pass/	
	Required	Average	Fail	
Actual Leakage				En la
(CFM) @75 Pa	<11,578 CFM		Pass	
Actual Leakage Rate / SqFt		.092 CFM /		
(CFM/SqFt) @75 Pa	.15 CFM /SqFt	SqFt	Pass	
Effective Leakage Area				
(SqFt)		5.4 SqFt		
Pressure Exponent (n)	.45 < n < .8	0.68	Pass	
Air Leakage Coefficient				
(CFM/Pa*n)		386.3		
Squared Correlation				
Coefficient	R ² > .98	0.9982	Pass	

Resulted in down-sized Mechanical Systems

Five 1,000,000 BTUH Boilers

Two 500,000 BTUH Boilers

Mechanical Systems

Dedicated Outdoor Air System (DOAS) on roof

Exterior ducting inside insulated chases

Radiant Heat Ceiling Panels

Mechanical Systems

Dedicated Outdoor Air System (DOAS) on roof

Exterior ducting inside insulated chases

Radiant Heat Ceiling Panels

Mechanical Systems

Dedicated Outdoor Air System (DOAS) on roof

Exterior ducting inside insulated chases

Radiant Heat Ceiling Panels

Dedicated Outside Air Units

Heat-recovery wheel

Exterior Ducting

Exterior Ducting

Fire Dampers

Ductwork enters building – low beam clearance

Ductwork along perimeter – soffit needed

Duct Leakage Testing

Duct Air Leakage Test

Radiant Panel in each bedroom

Solar Thermal System and Stratified HW tanks

Grey-water Heat Recovery

Grey-water Harvesting & Reuse

Grey-water Harvesting & Reuse

GW piping and venting, non-potable supply lines

Non-potable water - labeling

Electric & Water meters by floor

Contact info:

Jay Tulley Presidio of Monterey Jay.h.tulley.civ@mail.mil 831-917-7155