Thermal Bridging

Good Enclosures Require More Than Adding Insulation

Washington DC Sept 2016

THERMAL BRIDGING

What is a Thermal Bridge?

- Highly conductive material that by-passes insulation layer
- Areas of high heat transfer
- Can greatly affect the thermal performance of assemblies

WHY DO WE CARE ABOUT ENVELOPE THERMAL PERFORMANCE

- Heat flows determine:
 - Heating and cooling system capacity
 - Purchased energy requirements
 - Compliance with energy codes
 - Compliance with voluntary energy programs
- Arrangement of materials determine:
 - Surface temperatures
 - Condensation and moisture collection
 - Durability
 - Mold growth and health issues

PARALLEL PATH HEAT FLOW

$$U_{total} = \frac{(U_1A_1 + U_2A_2 + U_3A_3 \dots)}{(A_1 + A_2 + A_3 \dots)} \cdot \Delta T$$

PARALLEL PATH

ADDRESSING LATERAL HEAT FLOW

FIGURING OUT LINEAR LOSSES

THE CONCEPTUAL LEAP

Types of Transmittances

BUILDING ENVELOPE ANALYSIS

OVERALL HEAT LOSS

WHERE TO FIND DATA

International Energy Agency

Deep-Energy-Retrofit¶

A.Prescriptive.Guide.to.Achieve.Significant.Energy.Use. Reduction.with.Major.Renovation.Projects¶ Annex.61, Subtask.A¶

Best-Case Thermal Loss Reduction: 0.529 Btu/h • ft • ° F

Proposed retrofit

Detail from inset

Q/C and sequencing

Details

- Apply a layer of spray foam insulation at the interior roof/wall intersection region.
- 2. Apply a finish layer of spray-on fire protection over the insulation.

Note

For improved performance, see proposed solution 1d for exterior under

WHERE TO FIND DATA

CERL US ARMY W9132T-10-D-0002

SOLUTIONS AND INSTRUCTIONAL AIDS FOR PREVENTION OF THERMAL BRIDGES

AUGUST 21st 2014

Web Based Presentation

Project Team

- Mark Lawton, Morrison-Hershfield
- Bob Ryan, Passive House Academy
- John Straube, Building Science Consulting Inc.

WHERE TO FIND DATA

- Building Envelope Thermal Bridging Guide
 - Extensive catalogue of assemblies and details (400+)
 - Includes clear field, linear and point transmittances for a variety of constructions and configurations
 - How to section with examples
 - Energy and Cost Benefit Analysis
 - Industry and Policy Implications

GOOGLE BC HYDRO

		_	_		
	About BC Hydro	Careers	Newsletters	Contact Us	
BC Hydro Power smart	Q How can we h	elp?	Sign Up	Log in	
Accounts & Billing Energy savings News, events & media Energy in	B.C. Comm	unity S	afety & Out	ages	
Residential • Business • Alliance of Energy Professionals • Local governme	nt				
Home > Energy Savings > Business > Programs & Incentives > Commercial New Construction					
			PROGRAMS	& INCENTIVES	
Commercial New Construction			Leaders in energy management		
		Business energy-saving incentives			
				Commercial energy management assessment	
				Energy performance contracts	
			Continuous	optimization	
By being a leader in energy management, we can assist with resources, potential funding and technic	al assistance		Energy studi	es & audits	

Building envelope thermal bridging guide

This guide explores how the building industry in B.C. can meet the challenges of reducing energy use in buildings, in part by effectively accounting for the impact of thermal bridging.

Version 1.1 - April 2016

Many details and assemblies were added to the thermal performance catalogue (Appendix A and B) of BETB Guide Version 1.1. The sections related to the cost benefit analysis and market transformation have been removed so that the new version focuses only on providing thermal performance data and how to utilize this information in everyday practice.

Refer to the original version of the BETB Guide released in 2014 for sections related to energy savings and cost benefit analysis (Part 2) and market transformation (Part 3: Significance, Insights, and Next Steps). These documents are still relevant to current realities but are not material that need to be referenced in everyday practice and have not been updated since the original version of the BETB Guide.

- Building Envelope Thermal Bridging Guide Version 1.1 [PDF, 7.0 MB]
- Appendix A Catalogue Material Data Sheets Version 1.1 [PDF, 63.1 MB]
- Appendix B Catalogue Thermal Data Sheets Version 1.1 [PDF, 56.7 MB]

Version 1.0 – October 2014

Most practitioners will find PART 1 and Appendices A and B to be most useful. PART 1 outlines how to effectively account for thermal bridging. Appendices A and B provide a catalog of common building envelope assemblies and interface details, and their associated thermal performance data.

Researchers and regulators will be interested in PART 2 and PART 3, and Appendices C to E. They contain the cost-benefit analysis, and discussion on significance and further insights, of using this guide to mitigate thermal bridging in buildings. Appendix A - Catalogue Material Data Sheets

BUILDING ENVELOPE THERMAL BRIDGING GUIDE

CATALOGUE INDEX

Introd	uction	A.i
1.0	Window Wall	A.1.i
2.0	Conventional Curtain Wall	A.2.i
3.0	Unitized Curtain Wall	A.3.i
4.0	High Performance Curtain Wall	A.4.i
5.0	Steel Stud Construction	A.5.i
6.0	Concrete Construction	A.6.i
7.0	Wood Frame Construction	A.7.i
8.0	Doors and Balconies	A.8.i
9.0	Roofs	A.9.i

Magnitude of Heat Losses through Thermal Bridges in Combat Team Complex

Magnitude of Heat Losses through Thermal Bridges in Administrative Buildings

External Insulation

- Length of thermal bridges (feet)
- Heat loss through Existing Psi-values (BTU/hr.F)
- Heat loss through Upgraded Psi-values (BTU/hr.F)

Magnitude of Heat Losses through Thermal Bridges in Large TEMF

MORRISON HERSHFIELD

Magnitude of Heat Losses through Thermal Bridges in Administrative Buildings

External Insulation

BUILDING ENVELOPE ANALYSIS

O Sum of Active Clear Field Areas (Default)	55508.00	ft²
ි User Defined Area	Enter User Defined Opaque Area	f†²

Proposed Building Entries								Totals	7707.8	100%
Add/Remove Detail Transmittance Type		Include	Transmittance Description	Area, Length or Amount Takeoff	Units	Transmittance Value	Units	Source Reference	Heat Flow (BTU/hr°F)	%Total Heat Flow
A dd Clear Field	Clear Field	V	Spandrel Panel	9036.00	ft²	0.130	BTU/ hr ft² °F	Enter Source Here	1174.7	15%
Remove Clear Field	Clear Field	V	Concrete Wall	46472.00	ft ²	0.070	BTU/ hr ft² °F	Enter Source Here	3253.0	42%
Add Linear Interface Detail	Linear Interface Detail	V	Parapet at WW	298.00	ft	0.125	BTU/ hr ft °F	Enter Source Here	37.3	0%
Remove Linear Interface Detail	Linear Interface Detail	V	Parapet at CW	50.00	ft	0.058	BTU/ hr ft °F	Enter Source Here	2.9	0%
Remove Linear Interface Detail	Linear Interface Detail	Z	Parapet WW-Deck	89.00	ft	0.470	BTU/ hr ft °F	Enter Source Here	41.8	1%
Remove Linear Interface Detail	Linear Interface Detail	V	Parapet CW-Deck	35.00	ft	0.450	BTU/ hr ft °F	Enter Source Here	15.8	0%
Remove Linear Interface Detail	Linear Interface Detail	V	Glazing Trans Vert	19938.00	ft	0.050	BTU/ hr ft °F	Enter Source Here	996.9	13%
Remove Linear Interface Detail	Linear Interface Detail	V	Glazing Trans Horiz	2072.00	ft	0.050	BTU/ hr ft °F	Enter Source Here	103.6	1%
Remove Linear Interface Detail	Linear Interface Detail	V	Balcony at WW	4477.00	ft	0.177	BTU/ hr ft °F	Enter Source Here	792.4	10%
Remove Linear Interface Detail	Linear Interface Detail	V	Balcony at CW	1776.00	ft	0.140	BTU/ hr ft °F	Enter Source Here	248.6	3%
Remove Linear Interface Detail	Linear Interface Detail	V	Spandrel Bypass	3589.00	ft	0.290	BTU/ hr ft °F	Enter Source Here	1040.8	14%
Remove Linear Interface Detail	Linear Interface Detail		Eyebrow	888.00	ft	0.500	BTU/ hr ft °F	Enter Source Here	0.0	0%
Remove Linear Interface Detail	Linear Interface		Shear Wall	1295.00	ft	0.660	BTU/ hr ft °F	Enter Source Here	0.0	0%

EXAMPLE – OTTAWA INDUSTRIAL BUILDINGS

Parapet | extensiive severe damage

• Un-heated, high exposure to snow Melt, driving rain, solar

Un-heated Wall | localized severe damage

high exposure to rain and run-off

Corner | moderate concentrated damagehigh exposure to driving rain

Base of Wall | localized severe damage

high exposure to snow melt

Simulation Results for Painted Brick (6 year period) Parapet | high rain: 19 cycles Wall | high rain: 16 cycles Wall | low rain: 4 cycles

> Wall Field Area | minor damage
> medium to low Exposure to driving rain

EXAMPLE – WALL AND WINDOW

INSULATION OPTIONS

Link to spreadsheet

Vision Area / Glazing Ratio Clear Field Assemblies

Slab Edge Window Transitions Parapet

Other details m (corners) Lisolated Lisolated features (entrance canopy, etc.)

CLEAR FIELD ASSEMBLIES

Vertical Z-Girts Horizontal Z-Girts

Intermittent

Proprietary Systems

New Technology

Many clip and rail systems are now available on the market

EFFECT OF THERMAL BRIDGING IN 3D

PRIORITY 2 – SLAB EDGES

Table 1.3: Performance Categories and Default Transmittances for Floor and Balcony Slabs

	Porformanco C	otorony	Departmention and Examples	Linear Transmittance		
FLOOR AND BALCONY SLABS	Performance C	ategory	Description and Examples	<u>Btu</u> hr ft F	<u>₩</u> m К	
	Efficient Fully insulated with only small conductive bypasses Examples: exterior insulated wall and floor slab.		0.12	0.2		
		Improved	Thermally broken and intermittent structural connections Examples: structural thermal breaks, stand- off shelf angles.	0.20	0.35	
		Regular	Under-insulated and continuous structural connections Examples: partial insulated floor (i.e. firestop), shelf angles attached directly to the floor slab.	0.29	0.5	
		Poor	Un-insulated and major conductive bypasses Examples: un-insulated balconies and exposed floor slabs.	0.58	1.0	

MASONRY SHELF ANGLES

Floor Slab Linear Transmittance

Descri	ption of Detail (Thermal Anomaly)	Construction	Wall Assembly	Detailed Description	Reference	Linear Tra Btu / hr ft	nsmittance	Category
		туре	Description			F	WW m K	
Shelf Angle		Steel Framed	Interior and Exterior Insulated Steel Stud with Brick Veneer	Standard Shelf Angle with Metal Flashing at Concrete Floor Slab with Exterior and Interior Insulated Steel Stud with Brick Ties Supporting Brick Veneer	5.2.9	0.314	0.544	Poor
Shelf Angle		Steel Framed	Interior and Exterior Insulated Steel Stud with Brick Veneer	Stand-off Shelf Angle with Metal Flashing at Concrete Floor Slab with Exterior and Interior Insulated Steel Stud with Brick Ties Supporting Brick Veneer	5.2.10	0.217	0.376	Regular
Shelf Angle		Concrete	Exterior Insulated Concrete block with brick veneer	Shelf Angle with Metal Flashing at Concrete Floor with Exterior Insulated Concrete Block Wall Assembly with Masonry Ties Supporting Brick Veneer	6.2.14	0.270	0.467	Regular
Shelf Angle		Concrete	Exterior Insulated Concrete block with brick veneer	Stand-off Shelf Angle with Metal Flashing at Concrete Floor with Exterior Insulated Concrete Block Wall Assembly with Masonry Ties Supporting Brick Veneer	6.2.15	0.186	0.322	Improved

CONCRETE SLAB EDGES

What about wrapping insulation around the balcony?

Slab Linear Transmittance

Balcony Insulation Distance from wall (ft)	R ft ² ·hr·°F / Btu (m ² K / W)	U Btu/ft ² ·hr ·°F (W/m ² K)	ψ Btu/ft hr °F (W/m K)
0.00 (0.0)	R-6.5 (1.14)	0.155 (0.88)	0.445 (0.770)
0.66 (0.2)	R-7.2 (1.26)	0.140 (0.79)	0.342 (0.592)
1.31 (0.4)	R-7.5 (1.32)	0.134 (0.76)	0.306 (0.529)
2.62 (0.8)	R-7.6 (1.34)	0.131 (0.75)	0.287 (0.496)

PRIORITY 2 – WINDOW TRANSITIONS

Window Fitting Details

Aligned with insulation layer

Window Fitting Details

Increased by 800%

Current US Army Detail

WINDOWS IN ROUGH OPENINGS

GLAZING TRANSITIONS	Derfermenes Cr		Description and Evenue	Linear Transmittance	
	Performance Ca	ategory	Description and Examples	<u>Btu</u> hr ft F	<u>₩</u> тК
		Efficient	Well aligned glazing without conductive bypasses Examples: wall insulation is aligned with the glazing thermal break. Flashing does not bypass the thermal break.	0.12	0.2
		Regular	Misaligned glazing and minor conductive bypasses Examples: wall insulation is not continuous to thermal break and framing bypasses the thermal insulation at glazing interface.	0.20	0.35
		Poor	Un-insulated and conductive bypasses Examples: metal closures connected to structural framing. Un-insulated concrete opening (wall insulation ends at edge of opening).	0.29	0.5

BTU/hr.ft.F

Option 1: Insert thermal break

Option 2:Wrap the parapet

PRIORITY 3 – OTHER DETAILS

Base Assembly – Clear Wall R13.8 ft²·hr·°F/Btu (U-0.072)

STEEL CANOPY OUTRIGGERS

Dewpoint is $\sim 5^{\circ}C$

QUESTIONS?

mlawton@MorrisonHershfield.com