IEA Annex 61

Ideas out of the Passive House Development

Speaker: Berthold Kaufmann, Passivhaus Institut
Welcome to Passipedia!

The Passive House resource

Welcome to Passipedia, the Passive House resource! Please note that this is a project under construction which has only just been launched and will continuously grow and evolve over the next few months. The following pages are little more than a preview of what's to come...

Please take a first look and keep visiting in the future to watch Passipedia grow!

What is a Passive House?

- A building standard that is built energy efficient, comfortable, affordable and ecological at the same
time.
- Passive House is not a brand name, but a construction concept that can be applied by anyone and that
has stood the test of practice.
- Please click here to view Passive House examples! Passive House components have also proven
effective in existing buildings.
- Passive Houses offer:
 - Energy savings of up to 90% compared with existing buildings and more than 75% compared with
 average new buildings. In terms of heating oil, a Passive House uses only 1.5 litres per square
 metre per year – far less than a low-energy building.
 - A higher level of comfort! Superior air quality and pleasant temperatures year round.
 - A Passive House makes use of energy sources within the building, such as the residents’ body heat
 or the sun entering the building, making heating so much easier.

The Passive House – the leading concept for:

- Installation
 - Thermal bridge free design
 - Airtight construction
 - Heat recovery ventilation
 - Highly insulating windows
 - Innovative building envelopes

An energy balance is completed to make sure that all these details are perfectly coordinated. This
balance is established using the Passive House Planning Package (PHPP).

Follow IPHA on

IPHA - events @ Click here to get information on current events put on by
IPHA members: trade fairs, seminars, workshops, conferences, briefings...

Visit the Passive House Institute website to learn about the latest scientific findings

Upcoming events:

12 - 14 November 2010, 7th International Passive House Days - Experience the Passive House for
yourself!

10 December 2010: The 42nd session of the Research Group for Cost-efficient Passive Houses will

www.passipedia.org

IEA Annex 61, 9/2013
Summary in advance:

- recently high energy prices…
- for deep renovation just copy Passive House
- full lifecycle costs evaluation gives extra budget options:
 - extra investment on building envelope
 - significantly lower energy consumption costs
- both effects balance each other! (at present energy prices)
- ! if savings are significant ! much more than 50% possible !

- recent examples for good practice to be input to Annex 61: IEA Task 28 (newbuilt) IEA Task 37 (renovation)
...
- the 'three risk' evaluation – what do you fear about?
 - risk of failure 1 … nobody needs that building here
 - risk of too high construction costs / interest rates
 - risk of too low energy prices … too low calculated cost savings
 - risk of failure 2 too bad quality, so not enough savings
Contents: **Ideas out of the Passive House Development**

recently high energy prices…
- economic numbers clearly show what to do ('deep renovation')

why do so few actors really do?

possible approaches how to solve this dilemma:
- **which actions (renovation) give what savings?**
 detailed energy balance calculation needed
- **important question (technical): do buildings work as intended???**
 Quality Control is crucial
 make good quality visible by labelling

- **important question (economical): is there a budget????**
 economic balance evaluation is crucial
 economic evaluation (total lifecycle) of energy efficiency actions

- ((cost effective passive houses: a concept for social housing))
evident things...

you should only do build things you really need
– if you do not need a building (or have no money) don't do it.

- energy savings (EE) repay for the energy related action investment but for nothing else

look out for chances – combine the business
- if there is a building/renovation needed anyway just do the related energy saving action in that moment
- extra costs for thermal insulation etc. are quite small

recently energy prices high … interest rates low:
- investment in EE has priotity to energy consumption

economic numbers clearly show what to do ('deep renovation')
Examples for Passive Houses at some selected locations in Europe

- thermal insulation helps in anyway
- U-values might be lower, but not in the roof!

<table>
<thead>
<tr>
<th></th>
<th>Mannheim</th>
<th>Torino</th>
<th>Madrid</th>
<th>Seville</th>
<th>Palermo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Insulation wall [cm]</td>
<td>25</td>
<td>20</td>
<td>10</td>
<td>8</td>
<td>6</td>
</tr>
<tr>
<td>Insulation roof [cm]</td>
<td>35</td>
<td>25</td>
<td>25</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>Insulation basement [cm]</td>
<td>20</td>
<td>15</td>
<td>6</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>U window frames [W/(m²K)]</td>
<td>0.72</td>
<td>0.72</td>
<td>0.72</td>
<td></td>
<td></td>
</tr>
<tr>
<td>U-value glazing [W/(m²K)]</td>
<td>0.7</td>
<td>1.2</td>
<td>1.2</td>
<td>1.2</td>
<td>1.2</td>
</tr>
<tr>
<td>Humidity control for cooling</td>
<td>no</td>
<td>yes</td>
<td>no</td>
<td>no</td>
<td>yes</td>
</tr>
<tr>
<td>Heating demand [kWh/(m²a)]</td>
<td>15.6</td>
<td>14.8</td>
<td>12.7</td>
<td>4.6</td>
<td>3.1</td>
</tr>
<tr>
<td>Sensible cooling [kWh/(m²a)]</td>
<td>0</td>
<td>0.8</td>
<td>0.4</td>
<td>4.2</td>
<td>7.2</td>
</tr>
<tr>
<td>Latent cooling [kWh/(m²a)]</td>
<td>0</td>
<td>2.3</td>
<td>0</td>
<td>0</td>
<td>7.2</td>
</tr>
</tbody>
</table>

- Insulated frame & double low-e glazing for thermal comfort
- Roof always well insulated
- Floor slab not insulated
- Construction determined by winter conditions
- Significant cooling required
- Less frame insulation required

for more information see www.passipedia.org

IEA Annex 61, 9/2013
if active cooling needed – no more cooling peak power problem in PH

Existing old standard building: needs very high cooling power

Passive House: only low cooling power needed no electric peak power problem

for more information see www.passipedia.org
how to design buildings with respect to energy — setup detailed energy balance

- Going to small numbers you must be exact!
- new PHPP version 8.2 (2013) available
- ... extended ventilation spreadsheet for office buildings
- ... sheets 'summer', 'cooling', 'dehumidificatio' revised
- ... access to further climate data sets possible
Provide good building quality

QA and QC with deep energy retrofit

Quality Assessment & Quality Control by third party
is absolutely necessary
is worth while (because not really expensive)

- thermal insulation (U-values)
- thermal leakage (thermal bridges)
- air tightness of building envelope
- heat recovery performance of ventilation system

When having checked … mark 'good quality' by labels

- labelling is helpful for visualisation
- labelling is market information
- labelling provides orientation of market players

We know about good quality and can help to get it!
but there is no guarantee… anyway – good chance to win!
Buildings (new & renovation):

Components:

certified window frames and glazings, doors, ventilation systems compact heat pump units, construction systems without thermal bridges, low thermal bridge solutions, …

Persons:
windows and window frames for Passive Houses: examples

- the recommended trend: slim frames to get maximum input
- low U-values to further reduce thermal losses
- low costs...

Winter ewitherm
- bf: 154/169 mm
- U_W: 0.77 W/(m²K)
- Ψ_{opak}: 0.170 W/(mK)
- Efficiency class: phC

Pazen ENERsign
- bf: 100 mm
- U_W: 0.68 W/(m²K)
- Ψ_{opak}: 0.106 W/(mK)
- Efficiency class: phA

ProPh-F. SmartWin
- bf: 87 mm
- U_W: 0.79 W/(m²K)
- Ψ_{opak}: 0.098 W/(mK)
- Efficiency class: phA

FBS Over: VADBplus
- bf: 75/100 mm
- U_W: 0.74 W/(m²K)
- Ψ_{opak}: 0.076 W/(mK)
- Efficiency class: phA
Ventilation system with heat recovery is applicable to any building!

- about 50 ventilation unit certified up to now (100...7000 m³/h)
- see components database at www.passiv.de
Ventilation system with heat recovery is applicable to any building!

- **Saving of Energy**
 - heat recovery from exhaust air ≥ 75 %
 - low electricity consumption ≤ 0,45 Wh/m³

- **thermal comfort**
 - min. supply air temperature 16,5° C
 - low noise level: max. 25 dB(A) in living rooms
economic evaluation of governmental office building: low energy 2007 – 2009 and PH

NGF: 4684 m² NF: 3053 m² EBF: 3870 m²

source: Passivhaus Institut, Diploma Theses Anne Huse "Ökonomische Evaluierung…” available for download at www.passiv.de
economical comparison for office building

Low energy 2007
- $U_{\text{wall}} = 0.46 \text{ W/m}^2\text{K}$
- 2-pane glazing, standard frames
 $U_w = 1.48 \text{ W/m}^2\text{K}$
- Split cooling devices
- Standard gas boiler
- Internal gains: 5.71 W/m²
- Air tightness: 1.5/h
- Lighting: 4 W/(100lx*m²) installed;
 Fluorescent lamps with VVG;
- Without special light design

Low energy 2009
- $U_{\text{wall}} = 0.26 \text{ W/m}^2\text{K}$
- 3-pane glazing, standard frames
 $U_w = 1.11 \text{ W/m}^2\text{K}$
- Split cooling devices
- Condensing gas boiler
- Internal gains: 5.71 W/m²
- Air tightness: 1.5/h
- Lighting: 4 W/(100lx*m²) installed;
 Fluorescent lamps with VVG;
- Without special light design

Passive House
- $U_{\text{wall}} = 0.12 \text{ W/m}^2\text{K}$
- 3-pane glazing insulated frames
 $U_w = 0.86 \text{ W/m}^2\text{K}$
- Concrete core activation, ground probes, heat pump (summer+winter)
- Internal gains: 4.77 W/m²
- Air tightness: 0.5/h
- Hot water decentralized (electric)
- Lighting: 2 W/(100lx*m²) installed;
- Fluorescent lamps with electronic starter;
- With special light design

see Anne Huse, PH-conference 2010

IEA Annex 61, 9/2013
Investment costs go slightly up ...

- only energy related costs taken into account and shown!

see Anne Huse, PH-conference 2010

© Passivhaus Institut
... vs annual payments (total costs) reduced

- total lifecycle costs depend on interest rate & energy price

- investment cost (without residual value)
- electricity cost (lighting, cooling...)
- gas for heating
- maintenance cost
- heat pump electricity cost
- heating & cooling

© Passivhaus Institut
general analysis and thesis:
- Energy prices and interest rates will probably not be 'high' at the same time

this chance we have to take:
- if energy prices are high, you should avoid high energy consumption(!)
- low interest rates and high energy prices favour the higher investment for better building quality (energy efficiency)
- instead of burning (expensive) fossil fuels.
- hence Passive House (special) or energy efficiency (in general) is a profitable investment

third party advantages (win win win win):
- micro economy: local manufacturer (payed work for many people)
- macro economy: government (more taxes, welfare, ...)
- environment (less CO₂ ...)
- user (higher comfort, less cost that is like an old age provision!)

Conclusions: it's economically reasonable to change.....
What thermal insulation layer is economically reasonable?

... What is the optimal ratio between energy savings and investment costs?

... what is the cost of new paint for the house?
Total cost analysis of thermal insulation layer (ETHICS)

- boundary conditions as in the past (before 2004)
Total cost analysis of thermal insulation layer (ETHICS)

- boundary conditions as reported for german government (BBR 2008)

Cost parameter: life cycle: 50a, interest rate: 3.3%, price for end energy: 0.066 €/kWh

Present Cash Value of Energy Consumption Costs [€/m²]
Present Cash Value of Investment Costs [€/m²]
Total cost analysis of thermal insulation layer (ETHICS)

- boundary conditions as today (2012)

Cost parameter: life cycle: 50a, interest rate: 2.8%, price for end energy: 0.09 €/kWh

- Present Cash Value of Energy Consumption Costs [€/m²]
- Present Cash Value of Investment Costs [€/m²]

Economically optimal range

Passivhaus Institut
example: cost comparison new built row house

- row house: wooden construction 184 m² (treated floor area)
- rendering outside on wood fiber board
- Windows: 30 m² (plastic) shading of south windows
- district heating
- construction costs (KG 300+400) 1200 €/m²
Costs compared: new built row house

- moderate extra costs for Passive House compared to LEH(NEH)

Quelle: AKKP 42 Ökonomie
Passive House compared to low energy building (RMH)

- Energy costs as today (2012):
 PH and LEH (NEH) almost equal

RMH: PH vs. NEH + Solarthermie Kredit: 20 Jahre, Realzins: 2.5% Endenergie(Wärme): 0.1 €/kWh Endenergie(el): 0.25 €/kWh

- Present value of end-energy consumption costs (heating + hot water)
- Present value for maintenance (20 years)
- Present value for aux. electricity costs (20 years)
- Present value of investment costs (~ residual value) (20 years)
higher energy prices: significant advantage for PH

RMH: PH vs. NEH + Solarthermie Kredit: 20 Jahre, Realzins: 2.5% Endenergie(Wärme): 0.15 €/kWh Endenergie(el): 0.25 €/kWh
Passive House compared to low energy building

- PH compared to 'low-e'
- ventilation with heat recovery gives significant contribution

Saving by heat recovery

<table>
<thead>
<tr>
<th>Row House as Passive House or LEH (NEH) with solar thermal plant</th>
<th>aux. electricity solar thermal</th>
<th>aux. electricity ventilation and anti freezing</th>
<th>solar thermal contribution</th>
<th>end-energy demand heating + hot water</th>
</tr>
</thead>
<tbody>
<tr>
<td>PH0</td>
<td>PH1</td>
<td>PH2</td>
<td>PH3</td>
<td>PH4</td>
</tr>
<tr>
<td>sol</td>
<td>sol</td>
<td>sol</td>
<td>sol</td>
<td>sol</td>
</tr>
<tr>
<td>4m²</td>
<td>8m²</td>
<td>8m²</td>
<td>12m²</td>
<td>16m²</td>
</tr>
<tr>
<td>313L</td>
<td>550L</td>
<td>1000L</td>
<td>1500L</td>
<td>2000L</td>
</tr>
<tr>
<td>TVWW</td>
<td>TVWW</td>
<td>TVWW</td>
<td>TVWW</td>
<td>TVWW</td>
</tr>
<tr>
<td>39.4</td>
<td>29.5</td>
<td>23.4</td>
<td>22.8</td>
<td>15.3</td>
</tr>
</tbody>
</table>

Quelle: Protokollband 42 (Ökonomie) Arbeitskreis Kostengünstige PH
Problem: active solar (renewable) deficit in wintertime

- Solar thermal plants to support heating (HU) need to be very large
- PH3 typical PH with solar thermal plants to support heating
- Low-e-Building: Solar Input needed even larger
- In winter time only part of the demand is covered by solar thermal

Quelle: AKKP 42 (Ökonomie) www.passiv.de
Problem: active solar (renewable) deficit in wintertime

- Solar thermal plants to support heating (HU) need to be very large
- PH1: small solar thermal plants only for hot water
- PH3: heating supported in spring & autumn

Quelle: AKKP 42 (Ökonomie) www.passiv.de
Problem: active solar (renewable) deficit in wintertime

- Solar thermal plants to support heating (HU) need to be very large
- In winter time only part of the demand is covered by solar thermal

Quelle: AKKP 42 (Ökonomie) www.passiv.de
PH compared to 'low-e' building

- A ventilation system is not that 'expensive'!

Quelle: Protokollband 42 (Ökonomie) Arbeitskreis Kostengünstige PH
example (building service): concept for cooling and dehumidification

- centralized preconditioning of air (MVHR) combined with dehumidification to 12 g/kg on roof
- decentral heating or cooling to adjust comfortable air parameters with small circulation air heater/coolper in each dwelling (ach: 2/h)
- heat and cold source by water circle: cooled during summer, heated during winter
general: deciding factors for comfortable indoor climate

- **Air quality and thermal comfort**
- Comfortable temperature & humidity range
- Reduced radiation asymmetry
- Health (fresh unpolluted air, no mould growth etc.)
- No draughts ...

![Diagram showing comfort ranges](chart.png)
example: the outside climate conditions in Shanghai

- moderate winter temperatures
- please note: in south of China people are supposed not to heat...
- very hot & humid summer conditions: July, August, September
- in spring and autumn 'neutral' outside temperatures
- Hot & humid climate: summer cooling (sens & latent) needed
- Cooling & dehumification via supply air is possible
- Pure passive operation in spring and autumn, no heating, no cooling

Diagram:
- Indoor temperatures [°C]
- Zeit
- Preconditioning of incoming air
- Circulation air cooling with low air flow
- Operative temperature indoor
multi purpose device.... rotary wheel heat exchanger

- rotary thermal storage mass (large number of metal lamella)
- lamella transport heat and humidity aerosol to be removed from waste air
- over pressure at outside/supply air side
- flushing chamber to remove all waste air from wheel

advantages
- heat- and humidity recovery are adjustable by rotation speed
- no freezing down to very low temperatures
- low pressure losses
solution 1: active cooling & dehumidification supported by heat & humidity recovery

- sorption rotary wheel (1)
- active cooling coil afterwards
- cooled air (humidity <12 g/kg) reheated by condensation wheel (2)
- separate cooling and dehumidification is possible: stop wheel(2) for no re-heating

Outside air (hot in summer)

Waste air
summary: let us just do it!

'deep renovation'
- is much more than 50% reduction with respect to 'old' buildings
- is not that costly as sometimes told
- best practice experience is yet available
- is a business with many options

let us just start – there are enough examples ready to learn

the following slides showing the project 'EXPOST', Bozen Italy
Architect: Michael Tribus

If slideshow is too slow because of remote presentation, please have a look to the pdf-copy afterwards at Annex 61 website.
EXPOST, Bozen, Italy

built example 'deep renovation'

EXPOST before renovation
EXPOST after renovation
EXPOST before
thermal bridge design and evaluation

- you **must** check design for thermal performance!
- inside surface temperatures
- thermal flux (psi-value)
EXPOST afterwards
newest development: sustainable PH buildings – all (renewables) are possible

due to very low energy demand,
the choice of source for energy is quite free
AND: net zero energy buildings are realistic

- heating & cooling with heatpump & ground coupled probes
 might be supported by ever cheaper PV-panels

- co-generation / combined heat & power (CHP)
 reduces primary energy use: waste heat of engine is used for heating

- just keep in mind that PE-factor for electricity is about 3
- reduce internal loads, that pays twice!

- PHPP (Passive House Planning Package)
 gives advice for the most preferable choice
please note the following copyright notice: The present collection of slides was assembled for the participants of the seminar denoted below. This file or any printed copy of this file is for information purposes only and intended only for the personal use of the participants of this event. The transferral of this file to a third party or the right to publish it in any form is excluded. The contents are the intellectual property of the Passive House Institute. In particular, further use of individual contents (slides) is not permitted without the express permission of the Passive House Institute.